Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
47
result(s) for
"Bot, Brian M."
Sort by:
Remote smartphone monitoring of Parkinson’s disease and individual response to therapy
by
Perumal, Thanneer M.
,
Trister, Andrew D.
,
Wilbanks, John
in
631/61
,
692/308/409
,
692/699/375/1718
2022
Remote health assessments that gather real-world data (RWD) outside clinic settings require a clear understanding of appropriate methods for data collection, quality assessment, analysis and interpretation. Here we examine the performance and limitations of smartphones in collecting RWD in the remote mPower observational study of Parkinson’s disease (PD). Within the first 6 months of study commencement, 960 participants had enrolled and performed at least five self-administered active PD symptom assessments (speeded tapping, gait/balance, phonation or memory). Task performance, especially speeded tapping, was predictive of self-reported PD status (area under the receiver operating characteristic curve (AUC) = 0.8) and correlated with in-clinic evaluation of disease severity (
r
= 0.71;
P
< 1.8 × 10
−6
) when compared with motor Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Although remote assessment requires careful consideration for accurate interpretation of RWD, our results support the use of smartphones and wearables in objective and personalized disease assessments.
Smartphone sensors that monitor disease symptoms enable remote assessment of Parkinson’s patients.
Journal Article
The mPower study, Parkinson disease mobile data collected using ResearchKit
2016
Current measures of health and disease are often insensitive, episodic, and subjective. Further, these measures generally are not designed to provide meaningful feedback to individuals. The impact of high-resolution activity data collected from mobile phones is only beginning to be explored. Here we present data from mPower, a clinical observational study about Parkinson disease conducted purely through an iPhone app interface. The study interrogated aspects of this movement disorder through surveys and frequent sensor-based recordings from participants with and without Parkinson disease. Benefitting from large enrollment and repeated measurements on many individuals, these data may help establish baseline variability of real-world activity measurement collected via mobile phones, and ultimately may lead to quantification of the ebbs-and-flows of Parkinson symptoms. App source code for these data collection modules are available through an open source license for use in studies of other conditions. We hope that releasing data contributed by engaged research participants will seed a new community of analysts working collaboratively on understanding mobile health data to advance human health.
Design Type(s)
observation design • time series design • repeated measure design
Measurement Type(s)
disease severity measurement
Technology Type(s)
Patient Self-Report
Factor Type(s)
Sample Characteristic(s)
Homo sapiens
Machine-accessible metadata file describing the reported data
(ISA-Tab format)
Journal Article
Disentangling personalized treatment effects from “time-of-the-day” confounding in mobile health studies
by
Perumal, Thanneer M.
,
Bot, Brian M.
,
Tediarjo, Aryton
in
Alcohol
,
Autocorrelation
,
Autoregressive models
2022
Ideally, a patient’s response to medication can be monitored by measuring changes in performance of some activity. In observational studies, however, any detected association between treatment (“on-medication” vs “off-medication”) and the outcome (performance in the activity) might be due to confounders. In particular, causal inferences at the personalized level are especially vulnerable to confounding effects that arise in a cyclic fashion. For quick acting medications, effects can be confounded by circadian rhythms and daily routines. Using the time-of-the-day as a surrogate for these confounders and the performance measurements as captured on a smartphone, we propose a personalized statistical approach to disentangle putative treatment and “time-of-the-day” effects, that leverages conditional independence relations spanned by causal graphical models involving the treatment, time-of-the-day, and outcome variables. Our approach is based on conditional independence tests implemented via standard and temporal linear regression models. Using synthetic data, we investigate when and how residual autocorrelation can affect the standard tests, and how time series modeling (namely, ARIMA and robust regression via HAC covariance matrix estimators) can remedy these issues. In particular, our simulations illustrate that when patients perform their activities in a paired fashion, positive autocorrelation can lead to conservative results for the standard regression approach (i.e., lead to deflated true positive detection), whereas negative autocorrelation can lead to anticonservative behavior (i.e., lead to inflated false positive detection). The adoption of time series methods, on the other hand, leads to well controlled type I error rates. We illustrate the application of our methodology with data from a Parkinson’s disease mobile health study.
Journal Article
Detecting the impact of subject characteristics on machine learning-based diagnostic applications
by
Perumal, Thanneer M.
,
Bot, Brian M.
,
Trister, Andrew D.
in
639/705/531
,
692/308/2778
,
Biomedicine
2019
Collection of high-dimensional, longitudinal digital health data has the potential to support a wide-variety of research and clinical applications including diagnostics and longitudinal health tracking. Algorithms that process these data and inform digital diagnostics are typically developed using training and test sets generated from multiple repeated measures collected across a set of individuals. However, the inclusion of repeated measurements is not always appropriately taken into account in the analytical evaluations of predictive performance. The assignment of repeated measurements from each individual to both the training and the test sets (“record-wise” data split) is a common practice and can lead to massive underestimation of the prediction error due to the presence of “identity confounding.” In essence, these models learn to identify subjects, in addition to diagnostic signal. Here, we present a method that can be used to effectively calculate the amount of identity confounding learned by classifiers developed using a record-wise data split. By applying this method to several real datasets, we demonstrate that identity confounding is a serious issue in digital health studies and that record-wise data splits for machine learning- based applications need to be avoided.
Journal Article
The Mole Mapper Study, mobile phone skin imaging and melanoma risk data collected using ResearchKit
2017
Sensor-embedded phones are an emerging facilitator for participant-driven research studies. Skin cancer research is particularly amenable to this approach, as phone cameras enable self-examination and documentation of mole abnormalities that may signal a progression towards melanoma. Aggregation and open sharing of this participant-collected data can be foundational for research and the development of early cancer detection tools. Here we describe data from Mole Mapper, an iPhone-based observational study built using the Apple ResearchKit framework. The Mole Mapper app was designed to collect participant-provided images and measurements of moles, together with demographic and behavioral information relating to melanoma risk. The study cohort includes 2,069 participants who contributed 1,920 demographic surveys, 3,274 mole measurements, and 2,422 curated mole images. Survey data recapitulates associations between melanoma and known demographic risks, with red hair as the most significant factor in this cohort. Participant-provided mole measurements indicate an average mole size of 3.95 mm. These data have been made available to engage researchers in a collaborative, multidisciplinary effort to better understand and prevent melanoma.
Design Type(s)
observation design • longitudinal data analysis
Measurement Type(s)
Melanocytic nevus
Technology Type(s)
Patient Self-Report
Factor Type(s)
Sample Characteristic(s)
Homo sapiens
Machine-accessible metadata file describing the reported data
(ISA-Tab format)
Journal Article
Physical activity, sleep and cardiovascular health data for 50,000 individuals from the MyHeart Counts Study
by
Ashley, Euan A
,
Pavlovic Aleksandra
,
Doerr, Megan
in
Activity patterns
,
Data processing
,
Exercise
2019
Studies have established the importance of physical activity and fitness for long-term cardiovascular health, yet limited data exist on the association between objective, real-world large-scale physical activity patterns, fitness, sleep, and cardiovascular health primarily due to difficulties in collecting such datasets. We present data from the MyHeart Counts Cardiovascular Health Study, wherein participants contributed data via an iPhone application built using Apple’s ResearchKit framework and consented to make this data available freely for further research applications. In this smartphone-based study of cardiovascular health, participants recorded daily physical activity, completed health questionnaires, and performed a 6-minute walk fitness test. Data from English-speaking participants aged 18 years or older with a US-registered iPhone who agreed to share their data broadly and who enrolled between the study’s launch and the time of the data freeze for this data release (March 10 2015–October 28 2015) are now available for further research. It is anticipated that releasing this large-scale collection of real-world physical activity, fitness, sleep, and cardiovascular health data will enable the research community to work collaboratively towards improving our understanding of the relationship between cardiovascular indicators, lifestyle, and overall health, as well as inform mobile health research best practices.Design Type(s)observation design · source-based data analysis objective · data collection and processing objectiveMeasurement Type(s)physical activity · sleepTechnology Type(s)crowd-sourced data generationFactor Type(s)sex · height · weight · age · smoking status measurement · employment statusSample Characteristic(s)Homo sapiens · United States of AmericaMachine-accessible metadata file describing the reported data (ISA-Tab format)
Journal Article
A large dataset of protein dynamics in the mammalian heart proteome
2016
Protein stability is a major regulatory principle of protein function and cellular homeostasis. Despite limited understanding on mechanisms, disruption of protein turnover is widely implicated in diverse pathologies from heart failure to neurodegenerations. Information on global protein dynamics therefore has the potential to expand the depth and scope of disease phenotyping and therapeutic strategies. Using an integrated platform of metabolic labeling, high-resolution mass spectrometry and computational analysis, we report here a comprehensive dataset of the
in vivo
half-life of 3,228 and the expression of 8,064 cardiac proteins, quantified under healthy and hypertrophic conditions across six mouse genetic strains commonly employed in biomedical research. We anticipate these data will aid in understanding key mitochondrial and metabolic pathways in heart diseases, and further serve as a reference for methodology development in dynamics studies in multiple organ systems.
Design Type(s)
parallel group design • strain comparison design • time series design
Measurement Type(s)
protein-turnover assay
Technology Type(s)
mass spectrometry assay
Factor Type(s)
selectively maintained organism • alternate assay conditions • life cycle stage
Sample Characteristic(s)
Mus musculus • heart • blood plasma
Machine-accessible metadata file describing the reported data
(ISA-Tab format)
Journal Article
Genome-Wide Characterization of Transcriptional Patterns in High and Low Antibody Responders to Rubella Vaccination
by
Bot, Brian M.
,
Oberg, Ann L.
,
Wang, Vivian W.
in
Adolescent
,
Analysis
,
Antibodies, Viral - blood
2013
Immune responses to current rubella vaccines demonstrate significant inter-individual variability. We performed mRNA-Seq profiling on PBMCs from high and low antibody responders to rubella vaccination to delineate transcriptional differences upon viral stimulation. Generalized linear models were used to assess the per gene fold change (FC) for stimulated versus unstimulated samples or the interaction between outcome and stimulation. Model results were evaluated by both FC and p-value. Pathway analysis and self-contained gene set tests were performed for assessment of gene group effects. Of 17,566 detected genes, we identified 1,080 highly significant differentially expressed genes upon viral stimulation (p<1.00E(-15), FDR<1.00E(-14)), including various immune function and inflammation-related genes, genes involved in cell signaling, cell regulation and transcription, and genes with unknown function. Analysis by immune outcome and stimulation status identified 27 genes (p≤0.0006 and FDR≤0.30) that responded differently to viral stimulation in high vs. low antibody responders, including major histocompatibility complex (MHC) class I genes (HLA-A, HLA-B and B2M with p = 0.0001, p = 0.0005 and p = 0.0002, respectively), and two genes related to innate immunity and inflammation (EMR3 and MEFV with p = 1.46E(-08) and p = 0.0004, respectively). Pathway and gene set analysis also revealed transcriptional differences in antigen presentation and innate/inflammatory gene sets and pathways between high and low responders. Using mRNA-Seq genome-wide transcriptional profiling, we identified antigen presentation and innate/inflammatory genes that may assist in explaining rubella vaccine-induced immune response variations. Such information may provide new scientific insights into vaccine-induced immunity useful in rational vaccine development and immune response monitoring.
Journal Article
The Healthy Pregnancy Research Program: transforming pregnancy research through a ResearchKit app
by
Doerr, Megan
,
Bot, Brian M
,
Radin, Jennifer M
in
Digital technology
,
Health informatics
,
Pregnancy
2018
Although maternal morbidity and mortality in the US is among the worst of developed countries, pregnant women have been under-represented in research studies, resulting in deficiencies in evidence-based guidance for treatment. There are over two billion smartphone users worldwide, enabling researchers to easily and cheaply conduct extremely large-scale research studies through smartphone apps, especially among pregnant women in whom app use is exceptionally high, predominantly as an information conduit. We developed the first pregnancy research app that is embedded within an existing, popular pregnancy app for self-management and education of expectant mothers. Through the large-scale and simplified collection of survey and sensor generated data via the app, we aim to improve our understanding of factors that promote a healthy pregnancy for both the mother and developing fetus. From the launch of this cohort study on 16 March 2017 through 17 December 2017, we have enrolled 2058 pregnant women from all 50 states. Our study population is diverse geographically and demographically, and fairly representative of US population averages. We have collected 14,045 individual surveys and 107,102 total daily measurements of sleep, activity, blood pressure, and heart rate during this time. On average, women stayed engaged in the study for 59 days and 45 percent who reached their due date filled out the final outcome survey. During the first 9 months, we demonstrated the potential for a smartphone-based research platform to capture an ever-expanding array of longitudinal, objective, and subjective participant-generated data from a continuously growing and diverse population of pregnant women.
Journal Article
The consensus molecular subtypes of colorectal cancer
2015
An international consortium of colorectal cancer researchers undertakes a large-scale data sharing project to achieve a consensus molecular classification of colorectal cancers.
Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression–based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor–β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC—with clear biological interpretability—and the basis for future clinical stratification and subtype-based targeted interventions.
Journal Article