Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
40
result(s) for
"Bouich, Amal"
Sort by:
Design and efficiency enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au perovskite solar cell utilizing SCAPS-1D Simulator
2022
The poisoning potential of lead, which is the main component of the absorber layer of lead halide (Pb) perovskites, as well as the stability problems of the manufactured devices, constitute a major obstacle to the industrialization of this technology. As a result, recent research is concentrating on lead-free metal halide perovskites. Unfortunately, current lead-free perovskites suffer from poor performance, hence the interest of our study. The research presented here shows that optimizing several variables related to the performance of each layer of a perovskite solar cell (PSC) constructed from lead-free inorganic materials provides an efficiency of 18.13%. We designed a structure with outstanding performance using the FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au configuration. The impact of various relevant factors, such as the thickness and defect density of the absorber layer their doping densities, the back contact work, and the operating temperature, have been thoroughly investigated to boost the performance of the proposed device. The performance of cesium-tin-germanium triiodide (CsSn0.5Ge0.5I3) solar cells with different electron transport materials, including ZnO, TiO2, CdS, C60; Cd0.5Zn0.5S, IGZO, has also been examined. It has been demonstrated that using ZnO as an electron transport layer improves electron extraction and, therefore, performance. The best outcomes are obtained after optimizing all the factors mentioned above, namely: Jsc of 28.70 mA/cm2, Voc of 1.115 V, FF of 87.86%, and PCE of 18.13%. Additionally, the explored structure may be an excellent candidate for the future development of lead-free perovskite solar cells.
Journal Article
Enhancing the stability and crystallinity of CsPbIBr2 through antisolvent engineering
by
Soucase Bernabé Marí
,
Stewart, Alexander W
,
Bouich Amal
in
Bromine
,
Crystal structure
,
Crystallinity
2021
All inorganic lead-based perovskites containing bromine-iodine alloys, such as CsPbIBr2, have arisen as one of the most attractive candidates for absorber layers in solar cells. That said, there remains a large gap when it comes to film and crystal quality between the inorganic and hybrid perovskites. In this work, antisolvent engineering is employed as a simple and reproducible method for improving CsPbIBr2 thin films. We found that both the antisolvent used and the conditions under which it was applied have a measurable impact on both the quality and stability of the final product. We arrived at this conclusion by characterising the samples using scanning electron microscopy, X-ray diffraction, UV–visible and photoluminescence measurements, as well as employing a novel system to quantify stability. Our findings, and the application of our novel method for quantifying stability, demonstrate the ability to significantly enhance CsPbIBr2 samples, produced via a static one-step spin coating method, by applying isopropanol 10 s after commencing the spin programme. The antisolvent quenched CsPbIBr2 films demonstrate both improved crystallinity and an extended lifespan.
Journal Article
Electrodeposition of BiVO4 Nanoparticles on TiO2 Nanotubes: Characterization and Synergetic Photocatalytic Degradation Activity of Amido Black Dye
by
Ben Mabrouk, Kawther
,
Sassi, Syrine
,
Khemissi, Ines
in
amido black
,
Aqueous solutions
,
BiVO4 nanoparticles
2025
To enhance the photocatalytic performance of TiO2 nanotubes (NTs) for the degradation of Amido Black as an organic pollutant, electrodeposition of bismuth vanadate (BiVO4) nanostructures was successfully applied. The effect of electrodeposited BiVO4 (25 s, 50 s, 150 s, 250 s), followed by a thermal treatment on TiO2-NTs, was studied. The structures of the as-prepared samples were characterized by X-ray diffraction (XRD). Morphological behavior was investigated using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), both coupled with EDX. Optical characterizations were performed using photoluminescence and diffuse reflectance spectroscopy. The BiVO4/TiO2 NTs sample with 50 s deposition time gave the highest photocatalytic performance for Amido Black degradation, 99.4% after 150 min under UV light. This result has been achieved due to the structure and the optical properties of the sample. The heterojunction of both catalysts showed the synergetic effect on the photocatalytic performance where they remained stable after five cycling runs. Furthermore, quenching tests were conducted and proved that superoxide radicals (O2•) are the main active species during photodegradation process.
Journal Article
Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium
by
Bouich, Amal
,
Marí, Bernabé
,
Stewart, Alexander W.
in
Absorptivity
,
Cesium
,
Characterization and Evaluation of Materials
2021
In this work CsPbIBr
2
is doped with rubidium, where up to 12% of caesium atoms are replaced with those of rubidium. The obtained Cs
1 − x
Rb
x
PbIBr
2
, x= (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12), films were characterized by X-ray diffraction (XRD), the scanning electron microscope (SEM), photoluminescence (PL) and UV–visible spectroscopy. The integration of Rb
+
ions into the lattice leads to a detectable change in optoelectronic and morphological structure. Substituting 6% of caesium atoms yields the best results, eliminating pinholes and elevating crystallite size and absorption coefficient by 116 and 125%, respectively. Other novel observations, of particular interest, include a slight increase in band-gap energy from 2.1 eV to 2.14 eV and a decrease in stability. Over a period of 15 days, where temperature and relative humidity kept at 23 °C and 20%, respectively, a larger amount of degradation was seen to take place as rubidium content was increased. Therefore, the doping of CsPbIBr
2
with rubidium is most useful in the case where specifically film and crystal quality are desired to be targeted.
Journal Article
The Impact of Dust Deposition on PV Panels’ Efficiency and Mitigation Solutions: Review Article
by
Mesbahi, Oumaima
,
Tlemçani, Mouhaydine
,
Janeiro, Fernando M.
in
Alternative energy sources
,
Dust
,
dust deposition
2023
Conversion efficiency, power production, and cost of PV panels’ energy are remarkably impacted by external factors including temperature, wind, humidity, dust aggregation, and induction characteristics of the PV system such as tilt angle, altitude, and orientation. One of the prominent elements affecting PV panel performance and capability is dust. Nonetheless, dust features including size, shape, type, etc. are geologically known. Several mitigation methods have been studied for the reduction of dust concentration on the exterior face of the PV modules. The outcomes have demonstrated that dust concentration and pollutants remarkably affect the PV panel energy production. This paper reviews the recently developed research on the outcomes of the dust effect on PV panels in different locations and meets the needs of future research on this subject. Moreover, different cleaning methods that could be advantageous for future researchers in opting for the most applicable technique for dust removal are reviewed.
Journal Article
Manufacture of High-Efficiency and Stable Lead-Free Solar Cells through Antisolvent Quenching Engineering
by
Soucase, Bernabé Marí
,
Bouich, Amal
,
Marí-Guaita, Julia
in
Annealing
,
antisolvent treatment
,
Chlorobenzene
2022
Antisolvent quenching has shown to significantly enhance several perovskite films used in solar cells; however, no studies have been conducted on its impact on MASnI3. Here, we investigated the role that different antisolvents, i.e., diethyl ether, toluene, and chlorobenzene, have on the growth of MASnI3 films. The crystallinity, morphology, topography, and optical properties of the obtained thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) measurements, and UV–visible spectroscopy. The impact of the different antisolvent treatments was evaluated based on the surface homogeneity as well as the structure of the MASnI3 thin films. In addition, thermal annealing was optimized to control the crystallization process. The applied antisolvent was modified to better manage the supersaturation process. The obtained results support the use of chlorobenzene and toluene to reduce pinholes and increase the grain size. Toluene was found to further improve the morphology and stability of thin films, as it showed less degradation after four weeks under dark with 60% humidity. Furthermore, we performed a simulation using SCAPS-1D software to observe the effect of these antisolvents on the performance of MASnI3-based solar cells. We also produced the device FTO/TiO2/MASnI3/Spiro-OMeTAD/Au, obtaining a remarkable photoconversion efficiency (PCE) improvement of 5.11% when using the MASnI3 device treated with chlorobenzene. A PCE improvement of 9.44% was obtained for the MASnI3 device treated with toluene, which also showed better stability. Our results support antisolvent quenching as a reproducible method to improve perovskite devices under ambient conditions.
Journal Article
Measurement Interval Effect on Photovoltaic Parameters Estimation
by
Mesbahi, Oumaima
,
Tlemçani, Mouhaydine
,
Janeiro, Fernando M.
in
Case studies
,
Computer software industry
,
instruments
2023
Recently, the estimation of photovoltaic parameters has drawn the attention of researchers, and most of them propose new optimization methods to solve this problem. However, the process of photovoltaic parameters estimation can be affected by other aspects. In a real experimental setup, the I–V characteristic is obtained with IV tracers. Depending on their technical specifications, these instruments can influence the quality of the I–V characteristic, which in turn is inevitably linked to the estimation of photovoltaic parameters. Besides the uncertainties that accompany the measurement process, a major effect on parameters estimation is the size of the measurement interval of current and voltage, where some instruments are limited to measure a small portion of the characteristic or cannot reach their extremum regions. In this paper, three case studies are presented to analyse this phenomenon: different characteristic measurement starting points and different measurement intervals. In the simulation study the parameters are extracted from 1000 trial runs of the simulated I-V curve. The results are then validated using an experimental study where an IV tracer was built to measure the I–V characteristic. Both simulation and experimental studies concluded that starting the measurements at the open circuit voltage and having an interval spanning a minimum of half of the I–V curve results in an optimal estimation of photovoltaic parameters.
Journal Article
The Use of Copper-Based Delafossite to Improve Hydrogen Production Performance: A Review
by
Bouich, Amal
,
Soucase, Bernabé Mari
,
Chfii, Hasnae
in
Alternative energy sources
,
Copper
,
delafossite
2024
This review paper reports on the use of Delafossite as a layer between perovskite-based solar cells to improve hydrogen production efficiency and make the process easier. The investigation delves into the possible breakthroughs in sustainable energy generation by investigating the synergistic interplay between Delafossite and solar technology. This investigation covers copper-based Delafossite material’s properties, influence on cell performance, and function in the electrolysis process for hydrogen production. Some reports investigate the synthesis and characterizations of delafossite materials and try to improve their performance using photo electrochemistry. This work sheds light on the exciting prospects of Delafossite integration using experimental and analytical methodologies.
Journal Article
Electrophoretic Deposition of Gold Nanoparticles on Highly Ordered Titanium Dioxide Nanotubes for Photocatalytic Application
by
Sassi, Syrine
,
Guesmi, Ahlem
,
Benghanoum, Halima
in
Catalytic activity
,
Charge transfer
,
Degradation
2025
This work focused on the photocatalytic performance enhancement of titanium dioxide (TiO2) nanotubes decorated by gold nanoparticles. The surface of the nanotubes synthesized using the anodization technique was modified with subsequent deposition of gold nanoparticles (Au-NPs) via electrophoretic deposition. The impact of electrophoretically deposited gold nanoparticles (Au-NPs) on TiO2 nanotubes, with varying deposition times (5 min, 8 min and 12 min), was investigated in the degradation of amido black (AB) dye. The morphological analysis using scanning electron microscopy (SEM, TESCAN VEGA3, TESCAN Orsay Holding, Brno, Czech Republic) and transmission electron microscopy (TEM, JEM—100CX2, JEOL Japan). revealed a well-organized nanotubular structure of TiO2, with a wall thickness of 25 nm and an internal diameter of 75 nm. Optical study, including photoluminescence and diffuse reflectance spectroscopy, provided evidence of charge transfer between the Au-NPs and the TiO2-NTs. Furthermore, the photocatalytic measurements showed that the enhanced photocatalytic activity of the TiO2-NTs resulted from successful Au deposition onto their surface, surpassing that of the pure sample. This improvement is attributed to the higher work function of gold nanoparticles, which effectively promoted the separation of photogenerated electron–hole pairs. The sample Au-NPs/TiO2-NTs with a deposition time of 5 min exhibited the best photocatalytic efficiency, achieving an 85% degradation rate after 270 min under UV irradiation. Moreover, the enhancement obtained was also attributed to the plasmonic effect induced by Au-NPs. Kinetic investigations revealed that the photocatalytic reaction followed apparent first-order kinetics, highlighting the efficiency of Au-NPs/TiO2-NTs as a photocatalyst for dye degradation.
Journal Article
Investigation of the Surface Coating, Humidity Degradation, and Recovery of Perovskite Film Phase for Solar-Cell Applications
by
Hameed Khattak, Yousaf
,
Baig, Faisal
,
Soucase, Bernabé Marí
in
Alternative energy sources
,
APbI3
,
Atomic force microscopy
2022
Presently, we inquire about the organic/inorganic cation effect on different properties based on structure, morphology, and steadiness in preparing a one-step solution of APbI3 thin films, where A = MA, FA, Cs, using spin coating. This study was conducted to understand those properties well by incorporating device modeling using SCAPS-1D software and to upgrade their chemical composition. X-ray diffraction (XRD) was used to analyze the crystal structures. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were conducted to characterize the surface morphology; photoluminescence, Transmission Electron Microscopy (TEM), and a UV–Visible spectrometer helped us to study the optical properties. The (110) plane is where we found the perovskite’s crystalline structure. According to the XRD results and by changing the type of cation, we influence stabilization and the growth of the APbI3 absorber layer. Hither, a homogenous, smooth-surfaced, pinhole-free perovskite film and large grain size are results from the cesium cation. For the different cations, the band gap’s range, revealed by the optical analysis, is from 1.4 to 1.8 eV. Moreover, the stability of CsPbI3 remains excellent for two weeks and in a ~60% humid environment. Based on the UV–Visible spectrometer and photoluminescence characterization, a numerical analysis for fabricated samples was also performed for stability analysis by modeling standard solar-cell structures HTL/APbI3/ETL. Modeling findings are in good agreement with experimental results that CsPbI3 is more stable, showing a loss % in PCE of 14.28%, which is smaller in comparison to FAPbI3 (44.46%) and MAPbI3 (20.24%).
Journal Article