Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
38
result(s) for
"Bouvet, Alexandre"
Sort by:
Mapping of Rice Varieties and Sowing Date Using X-Band SAR Data
2018
Rice is a major staple food for nearly half of the world’s population and has a considerable contribution to the global agricultural economy. While spaceborne Synthetic Aperture Radar (SAR) data have proved to have great potential to provide rice cultivation area, few studies have been performed to provide practical information that meets the user requirements. In rice growing regions where the inter-field crop calendar is not uniform such as in the Mekong Delta in Vietnam, knowledge of the start of season on a field basis, along with the planted rice varieties, is very important for correct field management (timing of irrigation, fertilization, chemical treatment, harvest), and for market assessment of the rice production. The objective of this study is to develop methods using SAR data to retrieve in addition to the rice grown area, the sowing date, and the distinction between long and short cycle varieties. This study makes use of X-band SAR data from COSMO-SkyMed acquired from 19 August to 23 November 2013 covering the Chau Thanh and Thoai Son districts in An Giang province, Viet Nam, characterized by a complex cropping pattern. The SAR data have been analyzed as a function of rice parameters, and the temporal and polarization behaviors of the radar backscatter of different rice varieties have been interpreted physically. New backscatter indicators for the detection of rice paddy area, the estimation of the sowing date, and the mapping of the short cycle and long cycle rice varieties have been developed and assessed. Good accuracy has been found with 92% in rice grown area, 96% on rice long or short cycle, and a root mean square error of 4.3 days in sowing date. The results have been discussed regarding the generality of the methods with respect to the rice cultural practices and the SAR data characteristics.
Journal Article
Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series
by
Mermoz, Stéphane
,
Le Toan, Thuy
,
Bouvet, Alexandre
in
Agricultural sciences
,
deforestation
,
Engineering Sciences
2018
To detect deforestation using Earth Observation (EO) data, widely used methods are based on the detection of temporal changes in the EO measurements within the deforested patches. In this paper, we introduce a new indicator of deforestation obtained from synthetic aperture radar (SAR) images, which relies on a geometric artifact that appears when deforestation happens, in the form of a shadow at the border of the deforested patch. The conditions for the appearance of these shadows are analyzed, as well as the methods that can be employed to exploit them to detect deforestation. The approach involves two steps: (1) detection of new shadows; (2) reconstruction of the deforested patch around the shadows. The launch of Sentinel-1 in 2014 has opened up opportunities for a potential exploitation of this approach in large-scale applications. A deforestation detection method based on this approach was tested in a 600,000 ha site in Peru. A detection rate of more than 95% is obtained for samples larger than 0.4 ha, and the method was found to perform better than the optical-based UMD-GLAD Forest Alert dataset both in terms of spatial and temporal detection. Further work needed to exploit this approach at operational levels is discussed.
Journal Article
Use of SAR and Optical Time Series for Tropical Forest Disturbance Mapping
by
Sobe, Carina
,
Hirschmugl, Manuela
,
Schardt, Mathias
in
change detection
,
disturbance
,
earth observation
2020
Frequent cloud cover and fast regrowth often hamper topical forest disturbance monitoring with optical data. This study aims at overcoming these limitations by combining dense time series of optical (Sentinel-2 and Landsat 8) and SAR data (Sentinel-1) for forest disturbance mapping at test sites in Peru and Gabon. We compare the accuracies of the individual disturbance maps from optical and SAR time series with the accuracies of the combined map. We further evaluate the detection accuracies by disturbance patch size and by an area-based sampling approach. The results show that the individual optical and SAR based forest disturbance detections are highly complementary, and their combination improves all accuracy measures. The overall accuracies increase by about 3% in both areas, producer accuracies of the disturbed forest class increase by up to 25% in Peru when compared to only using one sensor type. The assessment by disturbance patch size shows that the amount of detections of very small disturbances (< 0.2 ha) can almost be doubled by using both data sets: for Gabon 30% as compared to 15.7–17.5%, for Peru 80% as compared to 48.6–65.7%.
Journal Article
Improving Heterogeneous Forest Height Maps by Integrating GEDI-Based Forest Height Information in a Multi-Sensor Mapping Process
2022
Forests are one of the key elements in ecological transition policies in Europe. Sustainable forest management is needed in order to optimise wood harvesting, while preserving carbon storage, biodiversity and other ecological functions. Forest managers and public bodies need improved and cost-effective forest monitoring tools. Research studies have been carried out to assess the use of optical and radar images for producing forest height or biomass maps. The main limitations are the quantity, quality and representativeness of the reference data for model training. The Global Ecosystem Dynamics Investigation (GEDI) mission (full waveform LiDAR on board the International Space Station) has provided an unprecedented number of forest canopy height samples from 2019. These samples could be used to improve reference datasets. This paper aims to present and validate a method for estimating forest dominant height from open access optical and radar satellite images (Sentinel-1, Sentinel-2 and ALOS-2 PALSAR-2), and then to assess the use of GEDI samples to replace field height measurements in model calibration. Our approach combines satellite image features and dominant height measurements, or GEDI metrics, in a Support Vector Machine regression algorithm, with a feature selection process. The method is tested on mixed uneven-aged broadleaved and coniferous forests in France. Using dominant height measurements for model training, the cross-validation shows 7.3 to 11.6% relative Root Mean Square Error (RMSE) depending on the forest class. When using GEDI height metrics instead of field measurements for model training, errors increase to 12.8–16.7% relative RMSE. This level of error remains satisfactory; the use of GEDI could allow the production of dominant height maps on large areas with better sample representativeness. Future work will focus on confirming these results on new study sites, improving the filtering and processing of GEDI data, and producing height maps at regional or national scale. The resulting maps will help forest managers and public bodies to optimise forest resource inventories, as well as allow scientists to integrate these cartographic data into climate models.
Journal Article
Understanding Dense Time Series of Sentinel-1 Backscatter from Rice Fields: Case Study in a Province of the Mekong Delta, Vietnam
2021
Rice is the primary staple food of more than half of the world’s population and plays an especially important role in global economy, food security, water use, and climate change. The usefulness of Synthetic Aperture Radars (SAR) for rice mapping and monitoring has been demonstrated locally in many studies, in particular in the last five years with the availability of an unprecedented amount of free Sentinel-1 data within the Copernicus program. However, although earlier studies from the 1990s have laid the foundations of the physical understanding of the SAR response of rice fields, the more recent studies tend to overlook this aspect and to favor instead approaches driven by supervised learning which provide accurate results locally but cannot necessarily be extended to wide areas. The objective of this study is to analyze in detail the backscatter temporal variation of rice fields, using Sentinel-1 from 2015 to 2020 and in-situ data for the 5 rice seasons over 2 years 2017–2018, in order to derive robust SAR-based indicators useful for rice monitoring applications, which are essential for planning, monitoring and food security applications. The test region is the An Giang province, in the Mekong River Delta, Vietnam, one of the world’s major rice regions which presents a diversity in rice cultivation practices, in cropping density, and in crop calendar. The SAR data have been analyzed as a function of rice parameters, and the temporal and polarization behaviors of the radar backscatter of different rice varieties have been interpreted physically. New backscatter indicators for the detection of rice paddy area, the estimation of the sowing date, phenological stage and the mapping of the short cycle and long cycle rice varieties have been developed and discussed regarding the generality of the methods with respect to the rice cultural practices and the SAR data characteristics.
Journal Article
Estimation and Mapping of Forest Structure Parameters from Open Access Satellite Images: Development of a Generic Method with a Study Case on Coniferous Plantation
by
Planells, Milena
,
Thevenon, Hervé
,
Mermoz, Stéphane
in
aboveground biomass
,
ALOS-PALSAR
,
Artificial intelligence
2019
Temperate forests are under climatic and economic pressures. Public bodies, NGOs and the wood industry are looking for accurate, current and affordable data driven solutions to intensify wood production while maintaining or improving long term sustainability of the production, biodiversity, and carbon sequestration. Free tools and open access data have already been exploited to produce accurate quantitative forest parameters maps suitable for policy and operational purposes. These efforts have relied on different data sources, tools, and methods that are tailored for specific forest types and climatic conditions. We hypothesized we could build on these efforts in order to produce a generic method suitable to perform as well or better in a larger range of settings. In this study we focus on building a generic approach to create forest parameters maps and confirm its performance on a test site: a maritime pine (Pinus pinaster) forest located in south west of France. We investigated and assessed options related with the integration of multiple data sources (SAR L- and C-band, optical indexes and spatial texture indexes from Sentinel-1, Sentinel-2 and ALOS-PALSAR-2), feature extraction, feature selection and machine learning techniques. On our test case, we found that the combination of multiple open access data sources has synergistic benefits on the forest parameters estimates. The sensibility analysis shows that all the data participate to the improvements, that reach up to 13.7% when compared to single source estimates. Accuracy of the estimates is as follows: aboveground biomass (AGB) 28% relative RMSE, basal area (BA) 27%, diameter at breast height (DBH) 20%, age 17%, tree density 24%, and height 13%. Forward feature selection and SVR provided the best estimates. Future work will focus on validating this generic approach in different settings. It may prove beneficial to package the method, the tools, and the integration of open access data in order to make spatially accurate and regularly updated forest structure parameters maps effortlessly available to national bodies and forest organizations.
Journal Article
Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India
by
Le Page, Michel
,
Caballero, Yvan
,
Dewandel, Benoit
in
Agriculture
,
agro-hydrology
,
Annual variations
2017
Indian agriculture relies on monsoon rainfall and irrigation from surface and groundwater. The interannual variability of monsoon rainfalls is high, which forces South Indian farmers to adapt their irrigated areas to local water availability. In this study, we have developed and tested a methodology for monitoring these spatiotemporal variations using Sentinel-1 and -2 observations over the Kudaliar catchment, Telangana State (~1000 km2). These free radar and optical data have been acquired since 2015 on a weekly basis over continental areas, at a high spatial resolution (10–20 m) that is well adapted to the small areas of South Indian field crops. A machine learning algorithm, the Random Forest method, was used over three growing seasons (January to March and July to November 2016 and January to March 2017) to classify small patches of inundated rice paddy, maize, and other irrigated crops, as well as surface water stored in the small reservoirs scattered across the landscape. The crop production comprises only irrigated crops (less than 20% of the areas) during the dry season (Rabi, December to March), to which rain-fed cotton is added to reach 60% of the areas during the monsoon season (Kharif, June to November). Sentinel-1 radar backscatter provides useful observations during the cloudy monsoon season. The lowest irrigated area totals were found during Rabi 2016 and Kharif 2016, accounting for 3.5 and 5% with moderate classification confusion. This confusion decreases with increasing areas of irrigated crops during Rabi 2017. During this season, 16% of rice and 6% of irrigated crops were detected after the exceptional rainfalls observed in September. Surface water in small surface reservoirs reached 3% of the total area, which corresponds to a high value. The use of both Sentinel datasets improves the method accuracy and strengthens our confidence in the resulting maps. This methodology shows the potential of automatically monitoring, in near real time, the high short term variability of irrigated area totals in South India, as a proxy for estimating irrigated water and groundwater needs. These are estimated over the study period to range from 49.5 ± 0.78 mm (1.5% uncertainty) in Rabi 2016, and 44.9 ± 2.9 mm (6.5% uncertainty) in the Kharif season, to 226.2 ± 5.8 mm (2.5% uncertainty) in Rabi 2017. This variation must be related to groundwater recharge estimates that range from 10 mm to 160 mm·yr−1 in the Hyderabad region. These dynamic agro-hydrological variables estimated from Sentinel remote sensing data are crucial in calibrating runoff, aquifer recharge, water use and evapotranspiration for the spatially distributed agro-hydrological models employed to quantify the impacts of agriculture on water resources.
Journal Article
Continuous Detection of Forest Loss in Vietnam, Laos, and Cambodia Using Sentinel-1 Data
by
Mermoz, Stéphane
,
Le Toan, Thuy
,
Bouvet, Alexandre
in
Agricultural sciences
,
Biodiversity
,
Cambodia
2021
In this study, we demonstrate the ability of a new operational system to detect forest loss at a large scale accurately and in a timely manner. We produced forest loss maps every week over Vietnam, Cambodia, and Laos (>750,000 km2 in total) using Sentinel-1 data. To do so, we used the forest loss detection method based on shadow detection. The main advantage of this method is the ability to avoid false alarms, which is relevant in Southeast Asia where the areas of forest disturbance may be very small and scattered and detection is used for alert purposes. The estimated user accuracy of the forest loss map was 0.95 for forest disturbances and 0.99 for intact forest, and the estimated producer’s accuracy was 0.90 for forest disturbances and 0.99 for intact forest, with a minimum mapping unit of 0.1 ha. This represents an important step forward compared to the values achieved by previous studies. We also found that approximately half of forest disturbances in Cambodia from 2018 to 2020 occurred in protected areas, which emphasizes the lack of efficiency in the protection and conservation of natural resources in protected areas. On an annual basis, the forest loss areas detected using our method are found to be similar to the estimations from Global Forest Watch. These results highlight the fact that this method provides not only quick alerts but also reliable detections that can be used to calculate weekly, monthly, or annual forest loss statistics at a national scale.
Journal Article
Impacts of the forest definitions adopted by African countries on carbon conservation
by
Mermoz, Stéphane
,
Toan, Thuy Le
,
Herold, Martin
in
Agricultural sciences
,
Biodegradation
,
Carbon
2018
In this paper, we aim to assess the impacts of the forest definitions adopted by each African country involved in the global climate change programmes of the United Nations on national carbon emission estimations. To do so, we estimate the proportion of national carbon stocks and tree cover loss that are found in areas considered to be non-forest areas. These non-forest areas are defined with respect to a threshold on the percentage of tree cover adopted by each country. Using percent tree cover and aboveground biomass maps derived from remote sensing data, we quantitatively show that in many countries, a large proportion of carbon stocks are found in non-forest areas, where a large amount of tree cover loss can also occur. We further found that under the REDD+ framework (reduced deforestation, reduced degradation, enhancement and conservation of forest carbon stocks, sustainable management of forests), some partner countries have proposed activities related to only reducing deforestation, even when a large proportion of their carbon stocks are stored outside forests. This situation may represent a limitation of the efficiency of the REDD+ mechanism, and could be avoided if these countries choose a lower tree cover threshold for their definition of forests and/or if they are engaged in other activities.
Journal Article
Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action
by
Kapos, V.
,
Ravilious, C.
,
Strassburg, B.
in
Biodiversity
,
Carbon Sequestration
,
Climate Change
2020
Integrated high-resolution maps of carbon stocks and biodiversity that identify areas of potential co-benefits for climate change mitigation and biodiversity conservation can help facilitate the implementation of global climate and biodiversity commitments at local levels. However, the multi-dimensional nature of biodiversity presents a major challenge for understanding, mapping and communicating where and how biodiversity benefits coincide with climate benefits. A new integrated approach to biodiversity is therefore needed. Here, we (a) present a new high-resolution map of global above- and below-ground carbon stored in biomass and soil, (b) quantify biodiversity values using two complementary indices (BIp and BIr) representing proactive and reactive approaches to conservation, and (c) examine patterns of carbon–biodiversity overlap by identifying 'hotspots' (20% highest values for both aspects). Our indices integrate local diversity and ecosystem intactness, as well as regional ecosystem intactness across the broader area supporting a similar natural assemblage of species to the location of interest. The western Amazon Basin, Central Africa and Southeast Asia capture the last strongholds of highest local biodiversity and ecosystem intactness worldwide, while the last refuges for unique biological communities whose habitats have been greatly reduced are mostly found in the tropical Andes and central Sundaland. There is 38 and 5% overlap in carbon and biodiversity hotspots, for proactive and reactive conservation, respectively. Alarmingly, only around 12 and 21% of these proactive and reactive hotspot areas, respectively, are formally protected. This highlights that a coupled approach is urgently needed to help achieve both climate and biodiversity global targets. This would involve (1) restoring and conserving unprotected, degraded ecosystems, particularly in the Neotropics and Indomalaya, and (2) retaining the remaining strongholds of intactness. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.
Journal Article