Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
834
result(s) for
"Bowen, Richard A"
Sort by:
SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection
by
Gagne, Roderick B.
,
Stenglein, Mark
,
Basho, Laura
in
Animal models
,
Animals
,
Biological Sciences
2021
SARS-CoV-2 spillback from humans into domestic and wild animals has been well documented, and an accumulating number of studies illustrate that human-to-animal transmission is widespread in cats, mink, deer, and other species. Experimental inoculations of cats, mink, and ferrets have perpetuated transmission cycles. We sequenced full genomes of Vero cell–expanded SARS-CoV-2 inoculum and viruses recovered from cats (n = 6), dogs (n = 3), hamsters (n = 3), and a ferret (n = 1) following experimental exposure. Five nonsynonymous changes relative to the USA-WA1/2020 prototype strain were near fixation in the stock used for inoculation but had reverted to wild-type sequences at these sites in dogs, cats, and hamsters within 1- to 3-d postexposure. A total of 14 emergent variants (six in nonstructural genes, six in spike, and one each in orf8 and nucleocapsid) were detected in viruses recovered from animals. This included substitutions in spike residues H69, N501, and D614, which also vary in human lineages of concern. Even though a live virus was not cultured from dogs, substitutions in replicase genes were detected in amplified sequences. The rapid selection of SARS-CoV-2 variants in vitro and in vivo reveals residues with functional significance during host switching. These observations also illustrate the potential for spillback from animal hosts to accelerate the evolution of new viral lineages, findings of particular concern for dogs and cats living in households with COVID-19 patients. More generally, this glimpse into viral host switching reveals the unrealized rapidity and plasticity of viral evolution in experimental animal model systems.
Journal Article
Socrates : Greek philosopher
by
Bowen, Richard A
,
Ghiuselev, Iassen illustrator
in
Socrates Juvenile literature.
,
Philosophers Greece Biography Juvenile literature.
,
Philosophers Greece Biography.
2014
A biography of Socrates, a philosopher and teacher in ancient Greece who held that wisdom comes from questioning ideas and values rather than simply accepting what is passed on by parents and teachers.
Pathogen reduction of monkeypox virus in plasma and whole blood using riboflavin and UV light
by
Ragan, Izabela K.
,
Goodrich, Raymond P.
,
Hartson, Lindsay M.
in
Accreditation
,
Animals
,
Biology and Life Sciences
2023
Monkeypox virus has recently emerged from endemic foci in Africa and, since October 20, 2022, more than 73,000 human infections have been reported by the CDC from over 100 countries that historically have not reported monkeypox cases. The detection of virus in skin lesions, blood, semen, and saliva of infected patients with monkeypox infections raises the potential for disease transmission via routes that have not been previously documented, including by blood and plasma transfusions. Methods for protecting the blood supply against the threats of newly emerging disease agents exist and include Pathogen Reduction Technologies (PRT) which utilize photochemical treatment processes to inactivate pathogens in blood while preserving the integrity of plasma and cellular components. Such methods have been employed broadly for over 15 years, but effectiveness of these methods under routine use conditions against monkeypox virus has not been reported.
Monkeypox virus (strain USA_2003) was used to inoculate plasma and whole blood units that were then treated with riboflavin and UV light (Mirasol Pathogen Reduction Technology System, Terumo BCT, Lakewood, CO). The infectious titers of monkeypox virus in the samples before and after riboflavin + UV treatment were determined by plaque assay on Vero cells.
The levels of spiked virus present in whole blood and plasma samples exceeded 103 infectious particles per dose, corresponding to greater than 105 DNA copies per mL. Treatment of whole blood and plasma units under standard operating procedures for the Mirasol PRT System resulted in complete inactivation of infectivity to the limits of detection. This is equivalent to a reduction of ≥ 2.86 +/- 0.73 log10 pfu/mL of infectivity in whole blood and ≥ 3.47 +/-0.19 log10 pfu/mL of infectivity in plasma under standard operating conditions for those products.
Based on this data and corresponding studies on infectivity in patients with monkeypox infections, use of Mirasol PRT would be expected to significantly reduce the risk of transfusion transmission of monkeypox.
Journal Article
Potent universal beta-coronavirus therapeutic activity mediated by direct respiratory administration of a Spike S2 domain-specific human neutralizing monoclonal antibody
by
Basu, Madhubanti
,
Martinez-Sobrido, Luis
,
Truong, Vu L.
in
Antibodies
,
Biology and life sciences
,
Coronaviruses
2022
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel β-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human β-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human β-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.
Journal Article
Evaluation of shedding, tissue burdens, and humoral immune response in goats after experimental challenge with the virulent Brucella melitensis strain 16M and the reduced virulence vaccine strain Rev. 1
by
Gonzalez-Juarrero, Mercedes
,
Higgins, Jennifer L.
,
Bowen, Richard A.
in
Abortion
,
Abortion, Spontaneous - microbiology
,
Analysis
2017
Brucella melitensis is the causative agent of brucellosis in small ruminants and is of considerable economic and public health importance in many countries worldwide. The control of disease in humans depends on the control of disease in livestock; however, few counties with endemic B. melitensis infection have been able to successfully eradicate this pathogen. This underscores the need for further research on the pathogenesis of both virulent and vaccine strains of B. melitensis in the small ruminant host. The aim of the present study was to characterize clinical effects, tissue colonization, shedding, and humoral immune response following B. melitensis infection in goats. Both virulent (16M) and reduced virulence (Rev. 1) strains of B. melitensis were studied. Pregnant goats were infected at 11-14 weeks of gestation with 8 x 106 or 8 x 107 CFU of B. melitensis. Infection of goats with B. melitensis 16M resulted in an 86% abortion rate. This strain disseminated widely in pregnant does post-infection with none of the 15 sampled tissues spared from colonization. Importantly, we report the first isolation of B. melitensis from muscle tissue in ruminants. Pathogenesis of Rev. 1 infection was variable with two does showing minimal colonization and one doe exhibiting disease similar to that of animals infected with fully virulent 16M. Shedding of B. melitensis in milk occurred in all 16M- and Rev. 1- infected goats. In pregnant animals challenged with virulent B. melitensis, median time to seroconversion was 21 days; however, 2 animals did not seroconvert until after abortion.
Journal Article
Peridomestic Mammal Susceptibility to Severe Acute Respiratory Syndrome Coronavirus 2 Infection
by
Root, J. Jeffrey
,
Guilbert, Lauren
,
Bosco-Lauth, Angela M.
in
Animal euthanasia
,
Animals
,
Animals, Wild
2021
Wild animals have been implicated as the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but it is largely unknown how the virus affects most wildlife species and if wildlife could ultimately serve as a reservoir for maintaining the virus outside the human population. We show that several common peridomestic species, including deer mice, bushy-tailed woodrats, and striped skunks, are susceptible to infection and can shed the virus in respiratory secretions. In contrast, we demonstrate that cottontail rabbits, fox squirrels, Wyoming ground squirrels, black-tailed prairie dogs, house mice, and racoons are not susceptible to SARS-CoV-2 infection. Our results expand the knowledge base of susceptible species and provide evidence that human-wildlife interactions could result in continued transmission of SARS-CoV-2.
Journal Article
A Zika Vaccine Targeting NS1 Protein Protects Immunocompetent Adult Mice in a Lethal Challenge Model
2017
Zika virus (ZIKV) is a mosquito-borne flavivirus that has rapidly extended its geographic range around the world. Its association with abnormal fetal brain development, sexual transmission, and lack of a preventive vaccine have constituted a global health concern. Designing a safe and effective vaccine requires significant caution due to overlapping geographical distribution of ZIKV with dengue virus (DENV) and other flaviviruses, possibly resulting in more severe disease manifestations in flavivirus immune vaccinees such as Antibody-Dependent Enhancement (ADE, a phenomenon involved in pathogenesis of DENV, and a risk associated with ZIKV vaccines using the envelope proteins as immunogens). Here, we describe the development of an alternative vaccine strategy encompassing the expression of ZIKV non-structural-1 (NS1) protein from a clinically proven safe, Modified Vaccinia Ankara (MVA) vector, thus averting the potential risk of ADE associated with structural protein-based ZIKV vaccines. A single intramuscular immunization of immunocompetent mice with the MVA-ZIKV-NS1 vaccine candidate provided robust humoral and cellular responses, and afforded 100% protection against a lethal intracerebral dose of ZIKV (strain MR766). This is the first report of (i) a ZIKV vaccine based on the NS1 protein and (ii) single dose protection against ZIKV using an immunocompetent lethal mouse challenge model.
Journal Article
Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis)
by
van Doremalen, Neeltje
,
Milne-Price, Shauna
,
Hawkinson, Ann
in
13/106
,
631/326/596/2078
,
631/326/596/2564
2016
The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of
Betacoronaviruses
. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV.
In vitro
, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (
Artibeus jamaicensis
) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the
innate
gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV.
Journal Article
Transmission of SARS-CoV-2 among underserved pastoralist communities in Kajiado County, Kenya: 2020–2022
2024
Initial transmission of severe acute respiratory syndrome virus-2 (SARS-CoV-2) was highest in densely populated regions of Kenya. Transmission gradually trickled down to the less densely populated, remote and underserved regions such as the pastoral regions of Kajiado County which are characterized by poor healthcare systems. Molecular assays that were pivotal for COVID-19 diagnosis were not available in these regions. Serology is an alternative method for retrospectively tracking the transmission of SARS-CoV-2 in such populations. Dry blood spots (DBS) were prepared from consenting patients attending six health facilities in Kajiado County from March 2020 to March 2022. Upon elution, we conducted an enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-Cov-2 IgG antibodies. Of the 908 DBSs we analyzed, 706 (78%) were from female participants. The overall seropositivity to SARS-Cov-2 antibodies was 7.3% (95% CI 5.7–9.1). The elderly (over 60 years) and male participants had a high likelihood of testing positive for SAR-CoV-2 infections. Mashuru (15.6%, 14/90) and Meto (15%, 19/127) health facilities registered the highest proportion of seropositive participants. Evidence of SARS-CoV-2 transmission among pastoralists in the remote and underserved regions of Kajiado County was established by DBS sampling and serologic testing.
Journal Article