Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
279
result(s) for
"Boxer, G."
Sort by:
Extreme electric fields power catalysis in the active site of ketosteroid isomerase
by
Bagchi, Sayn
,
Fried, Stephen D.
,
Boxer, Steven G.
in
Active sites
,
Biocatalysts
,
Biochemistry
2014
Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.
Journal Article
Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer of Bosutinib Binding to the Abl Tyrosine Kinase Domain
by
Levinson, Nicholas M.
,
Boxer, Steven G.
in
Abl protein
,
Aniline Compounds - chemistry
,
Aniline Compounds - pharmacology
2012
Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor's activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name \"bosutinib\", and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity.
Journal Article
Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers
by
Rawle, Robert J.
,
Boxer, Steven G.
,
Hughes, Laura D.
in
Biology
,
Chemical compounds
,
Chemistry
2014
Water-soluble organic fluorophores are widely used as labels in biological systems. However, in many cases these fluorophores can interact strongly with lipid bilayers, influencing the interaction of the target with the bilayer and/or leading to misleading fluorescent signals. Here, we quantify the interaction of 32 common water-soluble dyes with model lipid bilayers to serve as an additional criterion when selecting a dye label.
Journal Article
Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site
2014
Significance Because of the low mass of the proton, nuclear quantum effects can dramatically alter the properties of hydrogen-bond networks, especially when short and strong hydrogen bonds occur. Here, we combine experiments and state-of-the-art simulations that include the quantum nature of both the electrons and nuclei to show that the enzyme ketosteroid isomerase contains a hydrogen-bond network in its active site that facilitates extensive quantum proton delocalization. This leads to a 10,000-fold increase in the acidity of an active-site residue compared with the limit where the nuclei are classical particles. This work opens up new avenues for understanding the interplay between quantum effects and hydrogen bonding in biological systems containing strong hydrogen bonds.
Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.
Journal Article
Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus
by
Banik, Steven M.
,
Webster, Elizabeth R.
,
Boxer, Steven G.
in
Binding
,
Biological Sciences
,
Biophysics and Computational Biology
2020
The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membranetethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic’s conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host–pathogen interactions.
Journal Article
Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides
by
Chan, Yee-Hung M
,
Boxer, Steven G
,
van Lengerich, Bettina
in
Base Sequence
,
Biochemistry
,
Biological Sciences
2009
Synthetic lipid-oligonucleotide conjugates inserted into lipid vesicles mediate fusion when one population of vesicles displays the 5'-coupled conjugate and the other the 3'-coupled conjugate, so that anti-parallel hybridization allows the membrane surfaces to come into close proximity. Improved assays show that lipid mixing proceeds more quickly and to a much greater extent than content mixing, suggesting the latter is rate limiting. To test the effect of membrane-membrane spacing on fusion, a series of conjugates was constructed by adding 2-24 noncomplementary bases at the membrane-proximal ends of two complementary sequences. Increasing linker lengths generally resulted in progressively reduced rates and extents of lipid and content mixing, in contrast to higher vesicle docking rates. The relatively flexible, single-stranded DNA linker facilitates docking but allows greater spacing between the vesicles after docking, thus making the transition into fusion less probable, but not preventing it altogether. These experiments demonstrate the utility of DNA as a model system for fusion proteins, where sequence can easily be modified to systematically probe the effect of distance between bilayers in the fusion reaction.
Journal Article
Simulation-guided engineering of split GFPs with efficient β-strand photodissociation
2023
Green fluorescent proteins (GFPs) are ubiquitous for protein tagging and live-cell imaging. Split-GFPs are widely used to study protein-protein interactions by fusing proteins of interest to split GFP fragments that create a fluorophore upon typically irreversible complementation. Thus, controlled dissociation of the fragments is desirable. Although we have found that split strands can be photodissociated, the quantum efficiency of light-induced photodissociation of split GFPs is low. Traditional protein engineering approaches to increase efficiency, including extensive mutagenesis and screening, have proved difficult to implement. To reduce the search space, key states in the dissociation process are modeled by combining classical and enhanced sampling molecular dynamics with QM/MM calculations, enabling the rational design and engineering of split GFPs with up to 20-fold faster photodissociation rates using non-intuitive amino acid changes. This demonstrates the feasibility of modeling complex molecular processes using state-of-the-art computational methods, and the potential of integrating computational methods to increase the success rate in protein engineering projects.
Green fluorescent proteins (GFPs) are ubiquitous for protein tagging and live cell imaging. Here, authors have used computational methods to engineer a fast-dissociating split GFP, which could be used to study macromolecular interactions.
Journal Article
Enhanced active-site electric field accelerates enzyme catalysis
by
Mathews, Irimpan I
,
Boxer, Steven G
,
Ji, Zhe
in
Acceleration
,
Alcohol dehydrogenase
,
Carbon dioxide
2023
The design and improvement of enzymes based on physical principles remain challenging. Here we demonstrate that the principle of electrostatic catalysis can be leveraged to substantially improve a natural enzyme’s activity. We enhanced the active-site electric field in horse liver alcohol dehydrogenase by replacing the serine hydrogen-bond donor with threonine and replacing the catalytic Zn2+ with Co2+. Based on the electric field enhancement, we make a quantitative prediction of rate acceleration—50-fold faster than the wild-type enzyme—which was in close agreement with experimental measurements. The effects of the hydrogen bonding and metal coordination, two distinct chemical forces, are described by a unified physical quantity—electric field, which is quantitative, and shown here to be additive and predictive. These results suggest a new design paradigm for both biological and non-biological catalysts.The design and improvement of enzymes based on physical principles remain challenging. Now, the vibrational Stark effect has been used to demonstrate how an electrostatic model can unify the catalytic effects of distinct chemical forces in a quantitative manner and guide the design of enzyme variants that outperform their natural counterpart.
Journal Article
Brownian Ratchets: Molecular Separations in Lipid Bilayers Supported on Patterned Arrays
by
Boxer, Steven G.
,
van Oudenaarden, Alexander
in
4-Chloro-7-nitrobenzofurazan - analogs & derivatives
,
4-Chloro-7-nitrobenzofurazan - chemistry
,
4-Chloro-7-nitrobenzofurazan - isolation & purification
1999
Brownian ratchets use a time-varying asymmetric potential that can be applied to separate diffusing particles or molecules. A new type of Brownian ratchet, a geometrical Brownian ratchet, has been realized. Charged, fluorescently labeled phospholipids in a two-dimensional fluid bilayer were driven in one direction by an electric field through a two-dimensional periodic array of asymmetric barriers to lateral diffusion fabricated from titanium oxide on silica. Diffusion spreads the phospholipid molecules in the orthogonal direction, and the asymmetric barriers rectify the Brownian motion, causing a directional transport of molecules. The geometrical ratchet can be used as a continuous molecular sieve to separate mixtures of membrane-associated molecules that differ in electrophoretic mobility and diffusion coefficient.
Journal Article
Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase
by
Boxer, Steven G
,
Fenn, Timothy D
,
Herschlag, Daniel
in
Absorption
,
active sites
,
Aspartic Acid - metabolism
2012
Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pKa prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pKa near 7 was included. UV-absorbance and 13C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.
Journal Article