Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
162 result(s) for "Boyd, Jeff"
Sort by:
Resistance to therapy caused by intragenic deletion in BRCA2
Resistance in BRCA2 cancers The platinum chemotherapeutics such as cisplatin and carboplatin are in clinical use in patients with BRCA2 -mutated ovarian cancer. The initial response is generally good but most ovarian carcinomas ultimately become resistant to therapy. Two papers in this issue have identified a possible cause of this resistance as further mutation of the BRCA2 gene. Mutations in BRCA2 are associated with familial breast and ovarian cancer. Loss of BRCA2 function impairs DNA repair by homologous recombination and renders cells particular sensitive to cisplatin and also to PARP (poly (ADP-ribose) polymerase) inhibitors. The secondary 'resistance' mutations act by restoring the wild-type BRCA2 reading frame. Cells with loss of BRCA2 function are defective in homologous recombination (HR) and are highly sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) 1 , 2 , which provides the basis for a new therapeutic approach. Here we show that resistance to PARP inhibition can be acquired by deletion of a mutation in BRCA2 . We derived PARP-inhibitor-resistant (PIR) clones from the human CAPAN1 pancreatic cancer cell line, which carries the protein-truncating c.6174delT frameshift mutation. PIR clones could form DNA-damage-induced RAD51 nuclear foci and were able to limit genotoxin-induced genomic instability, both hallmarks of a competent HR pathway. New BRCA2 isoforms were expressed in the resistant lines as a result of intragenic deletion of the c.6174delT mutation and restoration of the open reading frame (ORF). Reconstitution of BRCA2-deficient cells with these revertant BRCA2 alleles rescued PARP inhibitor sensitivity and HR deficiency. Most of the deletions in BRCA2 were associated with small tracts of homology, and possibly arose from error-prone repair caused by BRCA2 deficiency 3 , 4 . Similar ORF-restoring mutations were present in carboplatin-resistant ovarian tumours from c.6174delT mutation carriers. These observations have implications for understanding drug resistance in BRCA mutation carriers as well as in defining functionally important domains within BRCA2.
Host subversion of bacterial metallophore usage drives copper intoxication
Microorganisms can acquire metal ions in metal-limited environments using small molecules called metallophores. While metals and their importers are essential, metals can also be toxic, and metallophores have limited ability to discriminate between metals. The impact of metallophore-mediated non-cognate metal uptake on bacterial metal homeostasis and pathogenesis remains to be defined. The globally significant pathogen Staphylococcus aureus uses the Cnt system to secrete the metallophore staphylopine in zinc-limited host niches. Here, we show that staphylopine and the Cnt system facilitate bacterial copper uptake, potentiating the need for copper detoxification. During in vivo infection, staphylopine usage increased S. aureus susceptibility to host-mediated copper stress, indicating that the innate immune response can harness the antimicrobial potential of altered elemental abundances in host niches. Collectively, these observations show that while the broad-spectrum metal-chelating properties of metallophores can be advantageous, the host can exploit these properties to drive metal intoxication and mediate antibacterial control. During infection, bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes S. aureus to copper intoxication. In response to zinc starvation, S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.
Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33
We performed a three-phase genome-wide association study (GWAS) using cases and controls from a genetically isolated population, Ashkenazi Jews (AJ), to identify loci associated with breast cancer risk. In the first phase, we compared allele frequencies of 150,080 SNPs in 249 high-risk, BRCA1/2 mutation-negative AJ familial cases and 299 cancer-free AJ controls using χ² and the Cochran-Armitage trend tests. In the second phase, we genotyped 343 SNPs from 123 regions most significantly associated from stage 1, including 4 SNPs from the FGFR2 region, in 950 consecutive AJ breast cancer cases and 979 age-matched AJ controls. We replicated major associations in a third independent set of 243 AJ cases and 187 controls. We obtained a significant allele P value of association with AJ breast cancer in the FGFR2 region (P = 1.5 x 10⁻⁵, odds ratio (OR) 1.26, 95% confidence interval (CI) 1.13-1.40 at rs1078806 for all phases combined). In addition, we found a risk locus in a region of chromosome 6q22.33 (P = 2.9 x 10⁻⁸, OR 1.41, 95% CI 1.25-1.59 at rs2180341). Using several SNPs at each implicated locus, we were able to verify associations and impute haplotypes. The major haplotype at the 6q22.33 locus conferred protection from disease, whereas the minor haplotype conferred risk. Candidate genes in the 6q22.33 region include ECHDC1, which encodes a protein involved in mitochondrial fatty acid oxidation, and also RNF146, which encodes a ubiquitin protein ligase, both known pathways in breast cancer pathogenesis.
Genetic Analysis of the Early Natural History of Epithelial Ovarian Carcinoma
The high mortality rate associated with epithelial ovarian carcinoma (EOC) reflects diagnosis commonly at an advanced stage, but improved early detection is hindered by uncertainty as to the histologic origin and early natural history of this malignancy. Here we report combined molecular genetic and morphologic analyses of normal human ovarian tissues and early stage cancers, from both BRCA mutation carriers and the general population, indicating that EOCs frequently arise from dysplastic precursor lesions within epithelial inclusion cysts. In pathologically normal ovaries, molecular evidence of oncogenic stress was observed specifically within epithelial inclusion cysts. To further explore potential very early events in ovarian tumorigenesis, ovarian tissues from women not known to be at high risk for ovarian cancer were subjected to laser catapult microdissection and gene expression profiling. These studies revealed a quasi-neoplastic expression signature in benign ovarian cystic inclusion epithelium compared to surface epithelium, specifically with respect to genes affecting signal transduction, cell cycle control, and mitotic spindle formation. Consistent with this gene expression profile, a significantly higher cell proliferation index (increased cell proliferation and decreased apoptosis) was observed in histopathologically normal ovarian cystic compared to surface epithelium. Furthermore, aneuploidy was frequently identified in normal ovarian cystic epithelium but not in surface epithelium. Together, these data indicate that EOC frequently arises in ovarian cystic inclusions, is preceded by an identifiable dysplastic precursor lesion, and that increased cell proliferation, decreased apoptosis, and aneuploidy are likely to represent very early aberrations in ovarian tumorigenesis.
Heterogenic Loss of the Wild-Type BRCA Allele in Human Breast Tumorigenesis
For individuals genetically predisposed to breast and ovarian cancer through inheritance of a mutant BRCA allele, somatic loss of heterozygosity affecting the wild-type allele is considered obligatory for cancer initiation and/or progression. However, several lines of evidence suggest that phenotypic effects may result from BRCA haploinsufficiency. Archival fixed and embedded tissue specimens from women with germ line deleterious mutations in BRCA1 or BRCA2 were identified. After pathologic review, focal areas of normal breast epithelium, atypical ductal hyperplasia, ductal carcinoma-in-situ, and invasive ductal carcinoma were identified from 14 BRCA1-linked and 9 BRCA2-linked breast cancers. Ten BRCA-linked prophylactic mastectomy specimens and 12 BRCA-linked invasive ovarian carcinomas were also studied. Laser catapult microdissection was used to isolate cells from the various pathologic lesions and corresponding normal tissues. After DNA isolation, real-time polymerase chain reaction assays were used to quantitate the proportion of wild-type to mutant BRCA alleles in each tissue sample. Quantitative allelotyping of microdissected cells revealed a high level of heterogeneity in loss of heterozygosity within and between preinvasive lesions and invasive cancers from BRCA1 and BRCA2 heterozygotes with breast cancer. In contrast, all BRCA-associated ovarian cancers displayed complete loss of the wild-type BRCA allele. These data suggest that loss of the wild-type BRCA allele is not required for BRCA-linked breast tumorigenesis, which would have important implications for the genetic mechanism of BRCA tumor suppression and for the clinical management of this patient population.
Accidental Hypothermia
Advances in rewarming have improved the prognosis for patients with hypothermia, especially those with cardiac arrest treated with extracorporeal rewarming. This review covers prehospital care, transport, resuscitation fluids, and extracorporeal membrane oxygenation. Accidental hypothermia (i.e., an involuntary drop in core body temperature to <35°C [95°F]) is a condition associated with significant morbidity and mortality. 1 – 4 Each year, approximately 1500 patients in the United States have hypothermia noted on their death certificate; however, the incidence of primary and secondary hypothermia and the associated morbidity and mortality remain unknown. 5 In a single tertiary care center, 14 different rewarming methods were used to treat 84 cases of accidental hypothermia, 3 which reflects the uncertainties about treatment and the potential for complications. 3 Certain treatment approaches are available only in specialized centers, and clarification is needed regarding the . . .
Triaging Multiple Victims in an Avalanche Setting: The Avalanche Survival Optimizing Rescue Triage Algorithmic Approach
As winter backcountry activity increases, so does exposure to avalanche danger. A complicated situation arises when multiple victims are caught in an avalanche and where medical and other rescue demands overwhelm resources in the field. These mass casualty incidents carry a high risk of morbidity and mortality, and there is no recommended approach to patient care specific to this setting other than basic first aid principles. The literature is limited with regard to triaging systems applicable to avalanche incidents. In conjunction with the development of an electronic avalanche rescue training module by the Canadian Avalanche Association, we have designed the Avalanche Survival Optimizing Rescue Triage algorithm to address the triaging of multiple avalanche victims to optimize survival and disposition decisions.