Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Bozhenkov, Sergey"
Sort by:
Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak 1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X) 2 , a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator’s non-turbulent ‘neoclassical’ energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas 3 , 4 . The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible 1 , 5 . Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization. Previously documented record values of the fusion triple product in the stellarator Wendelstein 7-X are shown to be evidence for reduced neoclassical energy transport in this optimized device.
Analysis of the neutral fluxes in the divertor region of Wendelstein 7-X under attached and detached conditions using EMC3-EIRENE
This paper analyzes the neutral fluxes in the divertor region of the W7-X standard configuration for different input powers, both under attached and detached conditions. The performed analysis is conducted through EMC3-EIRENE simulations. They show the importance of the horizontal divertor to generate neutrals, and resolve the neutral plugging in the divertor region. Simulations of detached cases show a decrease in the number of generated neutrals compared to the attached simulations, in addition to a higher fraction of the ion flux arriving on the baffles during detachment. As the ionization takes place further inside the plasma during detachment, a larger percentage of the generated neutral particles leave the divertor as neutrals. The leakage in the poloidal and toroidal direction increases, just as the fraction of collected particles at the pumping gap. The fraction of pumped particles increases with a factor two, but stays below one percent. This demonstrates that detachment with the current target geometry, although it improves the power exhaust, is not yet leading to an increased particle exhaust.
Serpent neutronics model of Wendelstein 7-X for 14.1 MeV neutrons
In this work, a Serpent 2 neutronics model of the Wendelstein 7-X (W7-X) stellarator is prepared, and an response function for the Scintillating-Fibre neutron detector (SciFi) is calculated using the model. The neutronics model includes the simplified geometry for the key components of the stellarator itself as well as the torus hall. The objective of the model is to assess the 14.1 MeV neutron flux from deuteron-triton fusions in W7-X, where the neutrons are modelled only until they have slowed down to 1 MeV energy. The key messages of this article are: demonstration of unstructured mesh geometry usage for stellarators, W7-X in particular; technical documentation of the model and first insights in fast neutron behaviour in W7-X, especially related to the SciFi: the model indicates that the superconducting coils are the strongest scatterers and block neutrons from large parts of the plasma. The back-scattering from e.g. massive steel support structures is found to be small. The SciFi will detect neutrons from an extended plasma volume in contrast to having an effective line-of-sight.
Global gyrokinetic analysis of Wendelstein 7-X discharge: unveiling the importance of trapped-electron-mode and electron-temperature-gradient turbulence
We present the first nonlinear, gyrokinetic, radially global simulation of a discharge of the Wendelstein 7-X-like stellarator (W7-X), including kinetic electrons, an equilibrium radial electric field, as well as electromagnetic and collisional effects. By comparison against flux-tube and full-flux-surface simulations, we assess the impact of the equilibrium ExB-flow and flow shear on the stabilisation of turbulence. In contrast to the existing literature, we further provide substantial evidence for the turbulent electron heat flux being driven by trapped-electron-mode (TEM) and electron-temperature-gradient (ETG) turbulence in the core of the plasma. The former manifests as a hybrid together with ion-temperature-gradient (ITG) turbulence and is primarily driven by the finite electron temperature gradient, which has largely been neglected in nonlinear stellarator simulations presented in the existing literature.
Quantification of systematic errors in the electron density and temperature measured with Thomson scattering at W7-X
The electron density and temperature profiles measured with Thomson scattering at the stellarator Wendelstein 7-X show features which seem to be unphysical, but so far could not be associated with any source of error considered in the data processing. A detailed Bayesian analysis reveals that errors in the spectral calibration cannot explain the features observed in the profiles. Rather, it seems that small fluctuations in the laser position are sufficient to affect the profile substantially. The impact of these fluctuations depends on the laser position itself, which, in turn, provides a method to find the optimum laser alignment in the future.
First Results from an Event Synchronized -- High Repetition Thomson Scattering System at Wendelstein 7-X
The Wendelstein 7-X (W7-X) Thomson scattering (TS) diagnostic was upgraded to transiently achieve kilohertz sampling rates combined with adjustable measuring times. The existing Nd:YAG lasers are employed to repetitively emit \"bursts\", i.e. multiple laser pulses in a short time interval. Appropriately timing burst in the three available lasers, up to twelve evenly spaced consecutive measurements per burst are possible. The pulse-to-pulse increment within a burst can be tuned from 2 ms to 33.3 ms (500 kHz - 30 Hz). Additionally, an event trigger system was developed to synchronize the burst Thomson scattering measurements to plasma events. Exemplary, a case of fast electron density and temperature evolution after cryogenic H2 pellet injection is presented in order to demonstrate the capabilities of the method.
Heat and particle flux detachment with stable plasma conditions in the Wendelstein 7-X stellarator fusion experiment
Reduction of particle and heat fluxes to plasma facing components is critical to achieve stable conditions for both the plasma and the plasma material interface in magnetic confinement fusion experiments. A stable and reproducible plasma state in which the heat flux is almost completely removed from the material surfaces was discovered recently in the Wendelstein 7-X stellarator experiment. At the same time also particle fluxes are reduced such that material erosion can be mitigated. Sufficient neutral pressure was reached to maintain stable particle exhaust for density control in this plasma state. This regime could be maintained for up to 28 seconds with a minimum feedback control.