Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
68
result(s) for
"Bozza, Marcelo T."
Sort by:
Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs
2020
Damage associated molecular patterns (DAMPs) are endogenous molecules originate from damaged cells and tissues with the ability to trigger and/or modify innate immune responses. Upon hemolysis hemoglobin (Hb) is released from red blood cells (RBCs) to the circulation and give a rise to the production of different Hb redox states and heme which can act as DAMPs. Heme is the best characterized Hb-derived DAMP that targets different immune and non-immune cells. Heme is a chemoattractant, activates the complement system, modulates host defense mechanisms through the activation of innate immune receptors and the heme oxygenase-1/ferritin system, and induces innate immune memory. The contribution of oxidized Hb forms is much less studied, but some evidence show that these species might play distinct roles in intravascular hemolysis-associated pathologies independently of heme release. This review aims to summarize our current knowledge about the formation and pro-inflammatory actions of heme and other Hb-derived DAMPs.
Journal Article
Hemolysis-induced lethality involves inflammasome activation by heme
by
Rosane B. de Oliveira
,
Letícia S. Alves
,
Marcelo T. Bozza
in
Adenosine triphosphatase
,
Animals
,
Apoptosis
2014
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K ⁺ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.
Significance Heme causes inflammation in sterile and infectious conditions, contributing to the pathogenesis of sickle cell disease, malaria, and sepsis, but the mechanisms by which heme operates are not completely understood. Here we show that heme induces IL-1β processing through the activation of the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Our results suggest that among NLRP3 activators, heme has common as well as unique requirements to trigger inflammasome activation. In vivo, hemolysis and heme cause inflammasome activation. Importantly, macrophages, inflammasome components, and IL-1R contribute to hemolysis-induced lethality. These results highlight the potential of understanding the molecular mechanisms by which heme is sensed by innate immune receptors as a way to identify new therapeutic strategies to treat the pathological consequences of hemolytic diseases.
Journal Article
Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice
by
de Carvalho, Antonio Carlos Campos
,
Bassani, Rosana A.
,
Alarcón, Micaela L.
in
59/36
,
631/250/127/1213
,
631/250/2504/342
2016
Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1β in DM mice. IL-1β causes prolongation of the action potential duration, induces a decrease in potassium current and an increase in calcium sparks in cardiomyocytes, which are changes that underlie arrhythmia propensity. IL-1β-induced spontaneous contractile events are associated with CaMKII oxidation and phosphorylation. We further show that DM-induced arrhythmias can be successfully treated by inhibiting the IL-1β axis with either IL-1 receptor antagonist or by inhibiting the NLRP3 inflammasome. Our results establish IL-1β as an inflammatory connection between metabolic dysfunction and arrhythmias in DM.
Ventricular arrhythmia is a leading cause of death in patients with diabetes. Here the authors show that inflammasome activation and ILK-1β production in cardiac macrophages cause arrhythmia in diabetic mice, which can be successfully treated using agonists to IL-1β receptor or NLRP3 inhibitors.
Journal Article
Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance
by
Paiva, Claudia N.
,
Bozza, Marcelo T.
,
Travassos, Leonardo H.
in
Anemia
,
Antioxidants
,
Bacterial infections
2020
Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proinflammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate infection through reduction of tissue damage or affecting resistance, the ability of the host to control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 constitute an interesting area of study and an opportunity for drug development.
Journal Article
Protein aggregation as a cellular response to oxidative stress induced by heme and iron
by
Dutra, Fabianno F.
,
Travassos, Leonardo H.
,
Paula-Neto, Heitor A.
in
Biological Sciences
,
Cell Biology
,
Erythrocytes
2016
Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis.
Journal Article
CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes
by
De Souza, Heitor S.
,
Duffy, Patrick E.
,
Pimentel-Coelho, Pedro M.
in
Arginine
,
Arginine deiminase
,
Biology and Life Sciences
2020
Neutrophil extracellular traps (NETs) evolved as a unique effector mechanism contributing to resistance against infection that can also promote tissue damage in inflammatory conditions. Malaria infection can trigger NET release, but the mechanisms and consequences of NET formation in this context remain poorly characterized. Here we show that patients suffering from severe malaria had increased amounts of circulating DNA and increased neutrophil elastase (NE) levels in plasma. We used cultured erythrocytes and isolated human neutrophils to show that Plasmodium-infected red blood cells release macrophage migration inhibitory factor (MIF), which in turn caused NET formation by neutrophils in a mechanism dependent on the C-X-C chemokine receptor type 4 (CXCR4). NET production was dependent on histone citrullination by peptidyl arginine deiminase-4 (PAD4) and independent of reactive oxygen species (ROS), myeloperoxidase (MPO) or NE. In vitro, NETs functioned to restrain parasite dissemination in a mechanism dependent on MPO and NE activities. Finally, C57/B6 mice infected with P. berghei ANKA, a well-established model of cerebral malaria, presented high amounts of circulating DNA, while treatment with DNAse increased parasitemia and accelerated mortality, indicating a role for NETs in resistance against Plasmodium infection.
Journal Article
The Role of MIF on Eosinophil Biology and Eosinophilic Inflammation
by
Bozza, Marcelo T
,
Kitoko, Jamil Z
,
Lintomen Leticia
in
Adaptive immunity
,
Allergic diseases
,
Animal models
2020
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that participates in innate and adaptive immune responses. MIF contributes to the resistance against infection agents, but also to the cellular and tissue damage in infectious, autoimmune, and allergic diseases. In the past years, several studies demonstrated a critical role for MIF in the pathogenesis of type-2-mediated inflammation, including allergy and helminth infection. Atopic patients have increased MIF amounts in affected tissues, mainly produced by immune cells such as macrophages, Th2 cells, and eosinophils. Increased MIF mRNA and protein are found in activated Th2 cells, while eosinophils stock pre-formed MIF protein and secrete high amounts of MIF upon stimulation. In mouse models of allergic asthma, the lack of MIF causes an almost complete abrogation of the cardinal signs of the disease including mucus secretion, eosinophilic inflammation, and airway hyper-responsiveness. Additionally, blocking the expression of MIF in animal models leads to significant reduction of pathological signs of eosinophilic inflammation such as rhinitis, atopic dermatitis, eosinophilic esophagitis and helminth infection. A number of studies indicate that MIF is important in the effector phase of type-2 immune responses, while its contribution to Th2 differentiation and IgE production is not consensual. MIF has been found to intervene in different aspects of eosinophil physiology including differentiation, survival, activation, and migration. CD4+ T cells and eosinophils express CD74 and CXCR4, receptors able to signal upon MIF binding. Blockage of these receptors with neutralizing antibodies or small molecule antagonists also succeeds in reducing the signals of inflammation in experimental allergic models. Together, these studies demonstrate an important contribution of MIF on eosinophil biology and in the pathogenesis of allergic diseases and helminth infection.
Journal Article
Critical role of CD4+ T cells and IFNγ signaling in antibody-mediated resistance to Zika virus infection
2018
Protective adaptive immunity to Zika virus (ZIKV) has been mainly attributed to cytotoxic CD8
+
T cells and neutralizing antibodies, while the participation of CD4
+
T cells in resistance has remained largely uncharacterized. Here, we show a neutralizing antibody response, dependent on CD4
+
T cells and IFNγ signaling, which we detected during the first week of infection and is associated with reduced viral load in the brain, prevention of rapid disease onset and survival. We demonstrate participation of these components in the resistance to ZIKV during primary infection and in murine adoptive transfer models of heterologous ZIKV infection in a background of IFNR deficiency. The protective effect of adoptively transferred CD4
+
T cells requires IFNγ signaling, CD8
+
T cells and B lymphocytes in recipient mice. Together, this indicates the importance of CD4
+
T cell responses in future vaccine design for ZIKV.
Characterization of protective immunity to Zika virus has largely focussed on CD8
+
T cells and antibody-mediated protection. Here the authors show roles for CD4
+
T cells and the associated IFNγ signaling in antibody-mediated resistance to Zika virus infection.
Journal Article
Heart function enhancement by an Nrf2-activating antioxidant in acute Y-strain Chagas disease, but not in chronic Colombian or Y-strain
by
Moreno-Loaiza, Oscar
,
Paiva, Claudia N.
,
Feijo, Daniel F.
in
Antioxidants
,
Benznidazole
,
Biology and Life Sciences
2024
Oxidative stress promotes T . cruzi growth and development of chronic Chagas heart dysfunction. However, the literature contains gaps that must be fulfilled, largely due to variations in parasite DTU sources, cell types, mouse strains, and tools to manipulate redox status. We assessed the impact of oxidative environment on parasite burden in cardiomyoblasts and the effects of the Nrf2-inducer COPP on heart function in BALB/c mice infected with either DTU-II Y or DTU-I Colombian T . cruzi strains. Treatment with antioxidants CoPP, apocynin, resveratrol, and tempol reduced parasite burden in cardiomyoblasts H9C2 for both DTUI- and II-strains, while H 2 O 2 increased it. CoPP treatment improved electrical heart function when administered during acute stage of Y-strain infection, coinciding with an overall trend towards increased survival and reduced heart parasite burden. These beneficial effects surpassed those of trypanocidal benznidazole, implying that CoPP directly affects heart physiology. CoPP treatment had beneficial impact on heart systolic function when performed during acute and evaluated during chronic stage. No impact of CoPP on heart parasite burden, electrical, or mechanical function was observed during the chronic stage of Colombian-strain infection, despite previous demonstrations of improvement with other antioxidants. Treatment with CoPP also did not improve heart function of mice chronically infected with Y-strain. Our findings indicate that amastigote growth is responsive to changes in oxidative environment within heart cells regardless of the DTU source, but CoPP influence on heart parasite burden in vivo and heart function is mostly confined to the acute phase. The nature of the antioxidant employed, T . cruzi DTU, and the stage of disease, emerge as crucial factors to consider in heart function studies.
Journal Article
Resveratrol Reverses Functional Chagas Heart Disease in Mice
by
Mata-Santos, Hilton
,
Feijó, Daniel F.
,
Paula-Neto, Heitor A.
in
Animals
,
Antioxidants - pharmacology
,
Biology and Life Sciences
2016
Chronic chagasic cardiomyopathy (CCC) develops years after acute infection by Trypanosoma cruzi and does not improve after trypanocidal therapy, despite reduction of parasite burden. During disease, the heart undergoes oxidative stress, a potential causative factor for arrhythmias and contractile dysfunction. Here we tested whether antioxidants/ cardioprotective drugs could improve cardiac function in established Chagas heart disease. We chose a model that resembles B1-B2 stage of human CCC, treated mice with resveratrol and performed electrocardiography and echocardiography studies. Resveratrol reduced the prolonged PR and QTc intervals, increased heart rates and reversed sinus arrhythmia, atrial and atrioventricular conduction disorders; restored a normal left ventricular ejection fraction, improved stroke volume and cardiac output. Resveratrol activated the AMPK-pathway and reduced both ROS production and heart parasite burden, without interfering with vascularization or myocarditis intensity. Resveratrol was even capable of improving heart function of infected mice when treatment was started late after infection, while trypanocidal drug benznidazole failed. We attempted to mimic resveratrol's actions using metformin (AMPK-activator) or tempol (SOD-mimetic). Metformin and tempol mimicked the beneficial effects of resveratrol on heart function and decreased lipid peroxidation, but did not alter parasite burden. These results indicate that AMPK activation and ROS neutralization are key strategies to induce tolerance to Chagas heart disease. Despite all tissue damage observed in established Chagas heart disease, we found that a physiological dysfunction can still be reversed by treatment with resveratrol, metformin and tempol, resulting in improved heart function and representing a starting point to develop innovative therapies in CCC.
Journal Article