Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
395 result(s) for "Braga, Daniel"
Sort by:
Effect of Service Temperature on the Mechanical and Fatigue Behaviour of Metal–Polymer Friction Stir Composite Joints
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at three different temperatures (23, 75, and 130 °C). Fracture surfaces were analyzed, and the probabilistic S–N curves were derived using Weibull distribution. Results indicated that increasing the service temperature caused a non-linear decrease in both the quasi-static and fatigue strength of the joints. Compared to room temperature, joints tested at 75 °C and 130 °C showed a 10% and 50% reduction in average tensile strength, respectively. The highest fatigue strength occurred at 23 °C, while the lowest was at 130 °C, in line with the quasi-static results. Fatigue stress-life plots displayed a semi-logarithmic nature, with lives ranging from 102 to 105 cycles for stress amplitudes between 7.7 and 22.2 MPa at 23 °C, 7.2 to 19.8 MPa at 75 °C, and 6.2 to 13.5 MPa at 130 °C. The joints’ failure occurred in the polymeric base material close to joints’ interface, highlighting the critical role of the polymer in limiting joints’ performance, as confirmed by thermal and scanning electron microscopy analyses.
Thermo-Mechanical Characterization of Metal–Polymer Friction Stir Composite Joints—A Full Factorial Design of Experiments
With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.
Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels
This study investigates the friction stir joining of AA6082-T6 aluminum alloy and Noryl GFN2 polymer in a buttstrap configuration, targeting the development of lightweight cylindrical-shaped structures where the polymer provides thermal, chemical, and electrical insulation, while the aluminum ensures mechanical integrity. A parametric analysis was carried out to assess the ability to produce friction stir buttstrap composite panels in a single processing step and assess the resulting tensile and flexural behavior. To that end, travel and rotating speeds ranging from 2150 to 2250 rpm, and 100 to 140 mm/min, respectively, were employed while keeping plunge depth and the tilt angle constant. A total of nine composite joints were successfully produced and subsequently subjected to both tensile and four-point bending tests. The tensile and flexural strength results ranged from 80 to 139 MPa, and 39 to 47 MPa, respectively. Moreover, the microstructural examination revealed that all joints exhibited a defect within the joining region and its size and shape had a significant effect on tensile strength, whereas the flexural strength was less affected with more uniform results. The joining region was also characterized by a decrease in hardness, particularly in the pin-affected region on the aluminum end of the joint, exhibiting a W-shaped pattern. Contrarily, on the polymeric end of the joining region, no significant change in hardness was observed.
Joining of Aluminum Alloy AA7075 and Titanium Alloy Ti-6Al-4V through a Friction Stir Welding-Based Process
Combining dissimilar parts has become imperative for developing the structures based on lightweight materials, such as metal alloys, polymers or polymer matrix composites, and this has become one of the solutions to reverse the current trend of CO2 emissions in the transport sector. However, given the usual property disparities, joining dissimilar materials in multi-material and multi-purpose structures raises new engineering challenges. Advanced joining processes, such as friction stir welding (FSW), have emerged and have been applied across several sectors as a promising alternative to conventional joining processes, such as mechanical fastening or adhesive bonding. In the present work, and in order to avoid the development of intermetallic compounds (IMCs), a different approach from the conventional technique of friction stir welding was applied to the production of dissimilar overlapping joints. These dissimilar joints were fabricated using a high strength aluminum alloy (AA7075-T651) and a titanium alloy (Ti-6Al-4V), both materials widely used in automotive, aeronautics and space industries. To perform a systematic investigation, the Taguchi method was used to determine the process parameter combinations to enable the fabrication of this type of dissimilar joints. The joints were subjected to quasi-static tensile shear tests to assess their mechanical performance and were compared to conventionally riveted joints in different configurations, namely, single and double connection points. The joints produced by the FSW based method showed higher mechanical performance. To assess the local properties, some of the fractured regions of the joints were subjected to hardness assessments, revealing no significant change in the hardness in the tested areas. Finally, a statistical study was performed to analyze the main effects and interactions of the process parameters, to identify their influences on the mechanical performance of the joints.
Shade trees composition and diversity in cacao agroforestry systems of southern Pará, Brazilian Amazon
Agroforestry systems (AFS) are important agricultural land use in synergy with socio-environmental aspects, especially with cacao (Theobroma cacao L.) crop, a commodity mainly produced by smallholders in the humid tropics. In southern Pará, Brazilian Amazon, farmers manage native shade trees growing with cacao, but species selection may be not appropriate to AFS maintenance over time. The objective of this study was to understand the shade trees transition between successional management phases of cacao-AFS, considering its initial shade (IS) and secondary shade (SS). It was sampled 10 plots in each situation (20,000 m2 in total) identifying individuals with CBH ≥ 15 cm. As expected, floristic composition was different and SS had greater species richness and diversity than IS, where only 17% of species were the shared among them. Musa sp. and Carica papaya L. were found only in IS and were dominant species, representing almost a half of the individuals. Although there was increase of late succession species from IS to SS, this still keeps high abundance of early succession species, such as Cecropia sp. The result shows an unexploited potential products and gap of services provision, such as N-fixing. The conclusion highlights the necessity of long-term succession planning and management practices to guarantee cacao crop maintenance and improve diversification with other income sources, such as fruits and wood. The role of biodiversity conservation, provided by shade trees, should be the target of political strategies to encourage its maintenance, such as payment for ecosystems services or other economic incentives.
Bartonella spp. in Phlebotominae Sand Flies, Brazil
Bartonella spp. are opportunistic, vectorborne bacteria that can cause disease in both animals and humans. We investigated the molecular occurrence of Bartonella spp. in 634 phlebotomine sand fly specimens, belonging to 44 different sand fly species, sampled during 2017-2021 in north and northeastern Brazil. We detected Bartonella sp. DNA in 8.7% (55/634) of the specimens by using a quantitative real-time PCR targeting the 16S-23S internal transcribed spacer intergenic region. Phylogenetic analysis positioned the Lutzomyia longipalpis sand fly-associated Bartonella gltA gene sequence in the same subclade as Bartonella ancashensis sequences and revealed a Bartonella sp. sequence in a Dampfomyia beltrani sand fly from Mexico. We amplified a bat-associated Bartonella nuoG sequence from a specimen of Nyssomyia antunesi sand fly. Our findings document the presence of Bartonella DNA in sand flies from Brazil, suggesting possible involvement of these insects in the epidemiologic cycle of Bartonella species.
Multiple Pulse Amperometry—An Antifouling Approach for Nitrite Determination Using Carbon Fiber Microelectrodes
Nitrite is a ubiquitous pollutant in modern society. Developing new strategies for its determination is very important, and electroanalytical methods present outstanding performance on this task. However, the use of bare electrodes is not recommended because of their predisposition to poisoning and passivation. We herein report a procedure to overcome these limitations on carbon fiber microelectrodes through pulsed amperometry. A three-pulse amperometry approach was used to reduce the current decay from 47% (after 20 min under constant potential) to virtually 0%. Repeatability and reproducibility were found to have an RSD lower than 0.5% and 7%, respectively. Tap water and synthetic inorganic saliva samples were fortified with nitrite, and the results obtained with the proposed sensor were in good agreement with the amount added.
Effects of Friction Stir Welding Process Control and Tool Penetration on Mechanical Strength and Morphology of Dissimilar Aluminum-to-Polymer Joints
An engineering grade polymer—glass fiber-reinforced polyphenylene ether blended with polystyrene—and an aluminum alloy—AA6082-T6—were joined by friction stir welding in an overlap configuration. A comprehensive analysis was conducted of the effects of the tool penetration by adjusting the pin length and the process control on the joints’ mechanical performance. To this end, a series of welds with a fixed 3° tilt angle, a travel speed of 120 mm/min, and 600 RPM of rotational speed was carried out. The analysis encompassed the mechanical strength of the fabricated joints and the mechanical energy input throughout the joining processes, the resulting cross-sectional interfaces, both on macro and micro scales, and the observed defects. The quasi-static shear tensile tests resulted in average tensile strengths varying between 5.5 and 26.1 MPa, representing joint efficiencies ranging from 10.1% to 47.4%, respectively. The joints that exhibited the lowest mechanical performance were fabricated with the highest level of tool penetration (higher pin length) with the process being position-controlled, while the best performance was recorded in joints welded with the lowest tool penetration and a force-controlled process. Nonetheless, the joint welded with a 2 mm long pin and position-controlled process exhibited a mechanical strength comparable with the highest one with a significantly lower standard deviation, a promising attribute for technological industrialization. In this way, it was found that the tool penetration, controlled by adjusting the pin length, played a significant role in the development of the joints’ morphology and, consequently, mechanical performance, whereas the process control exhibited a minor influence on the mechanical performance of the joints, but a considerable effect on process repeatability.
Effect of Strain Rate on Aluminum–Polymer Friction Stir Joints Mechanical Performance
Friction stir-based joining techniques offer a promising route for the integration of highly dissimilar materials into single structures, with potential applications in safety-critical sectors such as hydrogen storage and lightweight mobility systems. Ensuring structural integrity under dynamic loading is crucial for their industrial adoption, particularly given the strong inhomogeneity of metal–polymer interfaces. This study investigates the strain rate sensitivity of lap joints between an AA6082-T6 aluminum alloy, and a glass-fiber-reinforced polymer (Noryl™ GFN2) produced using a friction stir process. Quasi-static and intermediate strain rate (≈3 s−1) tensile tests were performed on the joints, while both base materials were additionally characterized at quasi-static, and intermediate strain rate conditions using a custom accelerated electromechanical testing device. Digital image correlation was employed to monitor deformation. The results reveal that the joints exhibit clear strain rate sensitivity, with ultimate remote stress and bending angle stiffness increasing by approximately 30% and 23%, respectively, from quasi-static to intermediate strain rate loading. Fracture consistently initiated in the polymer, indicating that the joints mechanical performance is limited by the polymeric constituent, although the polymer strain rate hardening impacts the peel/shear mix in the loading scenario of intermediate strain rate loading. Overall, the findings highlight that while friction stir metal–polymer joints benefit from strain rate hardening, their performance envelope remains governed by the polymer base material.
Friction stir weld-bonding defect inspection using phased array ultrasonic testing
Weight reduction is an important driver of the aerospace industry, which encourages the development of lightweight joining techniques to substitute rivet joints. Friction stir welding (FSW) is a solid-state process that enables the production of lighter joints with a small performance reduction compared to the base material properties. Increasing the FSW lap joint performance is an important concern. Friction stir weld bonding is a hybrid joining technology that combines FSW and adhesive bonding in order to increase the mechanical properties of FSW lap joints. FSW and hybrid lap joints were produced, using 2-mm-thick AA6082-T6 plates and a 0.2-mm-thick adhesive layer. Defect detection using the non-destructive test, phased array ultrasonic testing (PAUT), has been made. Microscopic observations were performed in order to validate the phased array ultrasonic testing results. Lap shear strength tests were carried out to quantify the joint’s quality. PAUT inspection successfully detected non-welded specimens but was not able to distinguish specimens with major hook defects from specimens correctly weld bonded with small hook defects.