Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
78 result(s) for "Brandt, Guido"
Sort by:
Massive migration from the steppe was a source for Indo-European languages in Europe
A genome-wide analysis of 69 ancient Europeans reveals the history of population migrations around the time that Indo-European languages arose in Europe, when there was a large migration into Europe from the Eurasian steppe in the east (providing a genetic ancestry still present in Europeans today); these findings support a ‘steppe origin’ hypothesis for how some Indo-European languages arose. Steppe change for European languages David Reich and colleagues generated genome-wide data from 69 Europeans who lived between 8,000 and 3,000 years ago. Their analyses reveal that closely related groups of early farmers — different from indigenous hunter-gatherers — appeared in Germany, Hungary and Spain at around 8,000 to 7,000 years ago. At the same time Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a 24,000-year-old Siberian. By 6,000 to 5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, apart from in Russia. Western and Eastern Europe came into contact about 4,500 years ago, leaving traces of steppe ancestry in present-day Europeans. In addition to providing new insights into Neolithic population dynamics, these analyses lend support to the theory of a steppe origin of at least some of the Indo-European languages of Europe. The reported findings are also consistent with a study of 101 Bronze Age genomes reported on page 167 of this issue. We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian 6 . By ∼6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin 9 of at least some of the Indo-European languages of Europe.
Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions
Archaeogenetic studies have described the formation of Eurasian ‘steppe ancestry’ as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4 th millennium BCE that subsequently facilitated the advance of pastoral societies in Eurasia. Here we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus. We observe a genetic separation between the groups of the Caucasus and those of the adjacent steppe. The northern Caucasus groups are genetically similar to contemporaneous populations south of it, suggesting human movement across the mountain range during the Bronze Age. The steppe groups from Yamnaya and subsequent pastoralist cultures show evidence for previously undetected farmer-related ancestry from different contact zones, while Steppe Maykop individuals harbour additional Upper Palaeolithic Siberian and Native American related ancestry. The Caucasus mountain range has impacted on the culture and genetics of the wider region. Here, the authors generate genome-wide SNP data for 45 Eneolithic and Bronze Age individuals across the Caucasus, and find distinct genetic clusters between mountain and steppe zones as well as occasional gene-flow.
Ancient DNA from European Early Neolithic Farmers Reveals Their Near Eastern Affinities
In Europe, the Neolithic transition (8,000-4,000 B.C.) from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 B.C.). However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500-4,900 calibrated B.C.) and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (n = 42) and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500-4,900 calibrated B.C.). We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (n = 23,394) and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting a major genetic input from this area during the advent of farming in Europe. However, the LBK population also showed unique genetic features including a clearly distinct distribution of mitochondrial haplogroup frequencies, confirming that major demographic events continued to take place in Europe after the early Neolithic.
Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans
Haplogroup H dominates present-day Western European mitochondrial DNA variability (>40%), yet was less common (~19%) among Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete haplogroup H mitochondrial genomes from ancient human remains. We then compare this ‘real-time’ genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of haplogroup H were largely established by the Mid Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated haplogroup H genomes allow us to reconstruct the recent evolutionary history of haplogroup H and reveal a mutation rate 45% higher than current estimates for human mitochondria. Here, Brotherton and colleagues sequence 39 mitochondrial genomes from ancient human remains. They track population changes across Central Europe and find that the foundations of the European mitochondrial DNA pool were formed during the Neolithic rather than the post-glacial period.
4000 years of human dietary evolution in central Germany, from the first farmers to the first elites
Investigation of human diet during the Neolithic has often been limited to a few archaeological cultures or single sites. In order to provide insight into the development of human food consumption and husbandry strategies, our study explores bone collagen carbon and nitrogen isotope data from 466 human and 105 faunal individuals from 26 sites in central Germany. It is the most extensive data set to date from an enclosed geographic microregion, covering 4,000 years of agricultural history from the Early Neolithic to the Early Bronze Age. The animal data show that a variety of pastures and dietary resources were explored, but that these changed remarkably little over time. In the human δ15N however we found a significant increase with time across the different archaeological cultures. This trend could be observed in all time periods and archaeological cultures (Bell Beaker phenomenon excluded), even on continuously populated sites. Since there was no such trend in faunal isotope values, we were able largely to exclude manuring as the cause of this effect. Based on the rich interdisciplinary data from this region and archaeological period we can argue that meat consumption increased with the increasing duration of farming subsistence. In δ13C, we could not observe any clear increasing or decreasing trends during the archaeological time periods, either for humans or for animals, which would have suggested significant changes in the environment and landscape use. We discovered sex-related dietary differences, with males of all archaeological periods having higher δ15N values than females, and an age-related increasing consumption of animal protein. An initial decrease of δ15N-values at the age of 1-2 years reveals partial weaning, while complete weaning took place at the age of 3-4 years.
Ancient DNA, Strontium isotopes, and osteological analyses shed light on social and kinship organization of the Later Stone Age
In 2005 four outstanding multiple burials were discovered near Eulau, Germany. The 4,600-year-old graves contained groups of adults and children buried facing each other. Skeletal and artifactual evidence and the simultaneous interment of the individuals suggest the supposed families fell victim to a violent event. In a multidisciplinary approach, archaeological, anthropological, geochemical (radiogenic isotopes), and molecular genetic (ancient DNA) methods were applied to these unique burials. Using autosomal, mitochondrial, and Y-chromosomal markers, we identified genetic kinship among the individuals. A direct child-parent relationship was detected in one burial, providing the oldest molecular genetic evidence of a nuclear family. Strontium isotope analyses point to different origins for males and children versus females. By this approach, we gain insight into a Late Stone Age society, which appears to have been exogamous and patrilocal, and in which genetic kinship seems to be a focal point of social organization.
Lombards on the Move – An Integrative Study of the Migration Period Cemetery at Szólád, Hungary
In 2005 to 2007 45 skeletons of adults and subadults were excavated at the Lombard period cemetery at Szólád (6th century A.D.), Hungary. Embedded into the well-recorded historical context, the article presents the results obtained by an integrative investigation including anthropological, molecular genetic and isotopic (δ(15)N, δ(13)C, (87)Sr/(86)Sr) analyses. Skeletal stress markers as well as traces of interpersonal violence were found to occur frequently. The mitochondrial DNA profiles revealed a heterogeneous spectrum of lineages that belong to the haplogroups H, U, J, HV, T2, I, and K, which are common in present-day Europe and in the Near East, while N1a and N1b are today quite rare. Evidence of possible direct maternal kinship was identified in only three pairs of individuals. According to enamel strontium isotope ratios, at least 31% of the individuals died at a location other than their birthplace and/or had moved during childhood. Based on the peculiar 87 Sr/86 Sr ratio distribution between females, males, and subadults in comparison to local vegetation and soil samples, we propose a three-phase model of group movement. An initial patrilocal group with narrower male but wider female Sr isotope distribution settled at Szólád, whilst the majority of subadults represented in the cemetery yielded a distinct Sr isotope signature. Owing to the virtual absence of Szólád-born adults in the cemetery, we may conclude that the settlement was abandoned after approx. one generation. Population heterogeneity is furthermore supported by the carbon and nitrogen isotope data. They indicate that a group of high-ranking men had access to larger shares of animal-derived food whilst a few individuals consumed remarkable amounts of millet. The inferred dynamics of the burial community are in agreement with hypotheses of a highly mobile lifestyle during the Migration Period and a short-term occupation of Pannonia by Lombard settlers as conveyed by written sources.
Ancient DNA Reveals Prehistoric Gene-Flow from Siberia in the Complex Human Population History of North East Europe
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans.
Operation of the Metrology Light Source as a primary radiation source standard
The Metrology Light Source (MLS), the new electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB) located in Berlin, is dedicated to metrology and technological developments in the UV and extreme UV spectral range as well as in the IR and THz region. The MLS can be operated at any electron beam energy between 105 and 630 MeV and at electron beam currents varying from 1 pA (one stored electron) up to 200 mA. Moreover, it is optimized for the generation of coherent synchrotron radiation in the far IR/THz range. Of special interest for PTB is the operation of the MLS as a primary radiation source standard from the near IR up to the soft x-ray region. Therefore, the MLS is equipped with all the instrumentation necessary to measure the storage ring parameters and geometrical parameters needed for the calculation of the spectral photon flux according to the Schwinger theory with low uncertainty.