Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,548 result(s) for "Brandt, P."
Sort by:
Piezo1-mediated spontaneous calcium transients in satellite glia impact dorsal root ganglia development
Spontaneous Ca 2+ transients of neural cells is a hallmark of the developing nervous system. It is widely accepted that chemical signals, like neurotransmitters, contribute to spontaneous Ca 2+ transients in the nervous system. Here, we reveal an additional mechanism of spontaneous Ca 2+ transients that is mechanosensitive in the peripheral nervous system (PNS) using intravital imaging of growing dorsal root ganglia (DRG) in zebrafish embryos. GCaMP6s imaging shows that developing DRG satellite glia contain distinct spontaneous Ca 2+ transients, classified into simultaneous, isolated, and microdomains. Longitudinal analysis over days in development demonstrates that as DRG satellite glia become more synchronized, isolated Ca 2+ transients remain constant. Using a chemical screen, we identify that Ca 2+ transients in DRG glia are dependent on mechanical properties, which we confirmed using an experimental application of mechanical force. We find that isolated spontaneous Ca 2+ transients of the glia during development is altered by manipulation of mechanosensitive protein Piezo1, which is expressed in the developing ganglia. In contrast, simultaneous Ca 2+ transients of DRG satellite glia is not Piezo1-mediated, thus demonstrating that distinct mechanisms mediate subtypes of spontaneous Ca 2+ transients. Activating Piezo1 eventually impacts the cell abundance of DRG cells and behaviors that are driven by DRG neurons. Together, our results reveal mechanistically distinct subtypes of Ca 2+ transients in satellite glia and introduce mechanobiology as a critical component of spontaneous Ca 2+ transients in the developing PNS.
Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity
Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10–20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors. The differentiation of prostate adenocarcinoma to neuroendocrine prostate cancer (CRPC-NE) is a mechanism of resistance to androgen deprivation therapy. Here the authors show that SWI/SNF chromatin-remodeling complex is deregulated in CRPC-NE and that the complex interacts with different lineage specific factors throughout prostate cancer transdifferentiation.
Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe
A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.
On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic
Ocean observations are analysed in the framework of Collaborative Research Center 754 (SFB 754) \"Climate-Biogeochemistry Interactions in the Tropical Ocean\" to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m in depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m in depth, with the lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal timescales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ, the eastern tropical South Pacific OMZ shows a similar structure, including an equatorial oxygen maximum driven by zonal advection but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.
Alcohol consumption, cigarette smoking and risk of subtypes of oesophageal and gastric cancer: a prospective cohort study
Objective:Alcohol consumption and cigarette smoking may be differentially associated with oesophageal squamous cell carcinoma (OSCC), oesophageal adenocarcinoma (OAC), gastric cardia adenocarcinoma (GCA) and gastric non-cardia adenocarcinoma (GNCA). However, because this was based on retrospective studies, these hypotheses were examined in a prospective cohort.Methods:The prospective Netherlands Cohort Study consists of 120 852 participants who completed a baseline questionnaire on diet and other cancer risk factors in 1986. After 16.3 years of follow-up, 107 OSCC, 145 OAC, 164 GCA and 491 GNCA cases were available for analysis using Cox proportional hazards models and the case–cohort approach.Results:The multivariable adjusted incidence rate ratio (RR) for OSCC was 4.61 (95% CI 2.24 to 9.50) for ⩾30 g ethanol/day compared with abstainers (p trend <0.001), while no associations with alcohol were found for OAC, GCA or GNCA. Compared with never smokers, current smokers had RRs varying from 1.60 for GCA to 2.63 for OSCC, and were statistically significant or borderline statistically significant. Frequency, duration and pack-years of smoking were independently associated with risk of all four cancers. A positive interaction was found between alcohol consumption and smoking status regarding OSCC risk. The RR for current smokers who consumed >15 g/day of ethanol was 8.05 (95% CI 3.89 to 16.60; p interaction = 0.65), when compared with never smokers who consumed <5 g/day of ethanol.Conclusions:This prospective study found alcohol consumption to be associated with increased risk of only OSCC. Cigarette smoking was associated with risk of all four cancers.
Identification of astroglia-like cardiac nexus glia that are critical regulators of cardiac development and function
Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest–derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap , glast , and glutamine synthetase , markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.
Open ocean dead zones in the tropical North Atlantic Ocean
Here we present first observations, from instrumentation installed on moorings and a float, of unexpectedly low (<2 μmol kg−1) oxygen environments in the open waters of the tropical North Atlantic, a region where oxygen concentration does normally not fall much below 40 μmol kg−1. The low-oxygen zones are created at shallow depth, just below the mixed layer, in the euphotic zone of cyclonic eddies and anticyclonic-modewater eddies. Both types of eddies are prone to high surface productivity. Net respiration rates for the eddies are found to be 3 to 5 times higher when compared with surrounding waters. Oxygen is lowest in the centre of the eddies, in a depth range where the swirl velocity, defining the transition between eddy and surroundings, has its maximum. It is assumed that the strong velocity at the outer rim of the eddies hampers the transport of properties across the eddies boundary and as such isolates their cores. This is supported by a remarkably stable hydrographic structure of the eddies core over periods of several months. The eddies propagate westward, at about 4 to 5 km day−1, from their generation region off the West African coast into the open ocean. High productivity and accompanying respiration, paired with sluggish exchange across the eddy boundary, create the \"dead zone\" inside the eddies, so far only reported for coastal areas or lakes. We observe a direct impact of the open ocean dead zones on the marine ecosystem as such that the diurnal vertical migration of zooplankton is suppressed inside the eddies.
Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer
Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG upregulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation. Gene fusions involving the ERG transcription factor and point mutations in the ubiquitin ligase adaptor SPOP are two truncal mutations that are mutually exclusively present in prostate cancer. Here, the authors show that mutations in SPOP render prostate tumor cells sensitive to antiandrogen therapy and that the presence of ERG promotes sensitivity to high dose of androgen and SPOP inhibition.
The joint association of air pollution and noise from road traffic with cardiovascular mortality in a cohort study
Objectives:Associations between cardiovascular mortality and air pollution and noise together were investigated.Methods:Data from the ongoing Netherlands Cohort Study on Diet and Cancer (120 852 subjects; follow-up 1987–1996) were used. Cox proportional hazard analyses were conducted for the association between cardiovascular mortality and exposure to black smoke, traffic intensity on the nearest road and road traffic noise at the home address.Results:The correlations between traffic noise and background black smoke, and traffic intensity on the nearest road were moderate at 0.24 and 0.30, respectively. Traffic intensity was associated with cardiovascular mortality, with highest relative risk (95% confidence interval) for ischaemic heart disease (IHD) mortality being 1.11 (1.03 to 1.20) (increment 10 000 motor vehicles/24 h). Relative risks for black smoke concentrations were elevated for cerebrovascular (1.39 (0.99 to 1.94)) and heart failure mortality (1.75 (1.00 to 3.05)) (increment 10 μg/m3). These associations were insensitive to adjustment for traffic noise. There was an excess of cardiovascular mortality in the highest noise category (>65 dB(A)), with elevated risks for IHD (1.15 (0.86 to 1.53)) and heart failure mortality (1.99 (1.05 to 3.79)). After adjustment for black smoke and traffic intensity, noise risk reduced to unity for IHD mortality and was slightly reduced for heart failure mortality.Conclusions:Associations between black smoke concentrations and traffic intensity on the nearest road with specific cardiovascular causes of death were not explained by traffic noise in this study.