Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Brassac, Jonathan"
Sort by:
Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness
Grain quality traits determine the classification of registered wheat ( Triticum aestivum L.) varieties. Although environmental factors and crop management practices exert a considerable influence on wheat quality traits, a significant proportion of the variance is attributed to the genetic factors. To identify the underlying genetic factors of wheat quality parameters viz., grain protein content (GPC), grain starch content (GSC), and grain hardness (GH), we evaluated 372 diverse European wheat varieties in replicated field trials in up to eight environments. We observed that all of the investigated traits hold a wide and significant genetic variation, and a significant negative correlation exists between GPC and GSC plus grain yield. Our association analyses based on 26,694 high-quality single nucleotide polymorphic markers revealed a strong quantitative genetic nature of GPC and GSC with associations on groups 2, 3, and 6 chromosomes. The identification of known Puroindoline-b gene for GH provided a positive analytic proof for our studies. We report that a locus QGpc.ipk-6A controls both GPC and GSC with opposite allelic effects. Based on wheat's reference and pan-genome sequences, the physical characterization of two loci viz., QGpc.ipk-2B and QGpc.ipk-6A facilitated the identification of the candidate genes for GPC. Furthermore, by exploiting additive and epistatic interactions of loci, we evaluated the prospects of predictive breeding for the investigated traits that suggested its efficient use in the breeding programs.
Unleashing floret fertility in wheat through the mutation of a homeobox gene
Floret fertility is a key determinant of the number of grains per inflorescence in cereals. During the evolution of wheat (Triticum sp.), floret fertility has increased, such that current bread wheat (Triticum aestivum) cultivars set three to five grains per spikelet. However, little is known regarding the genetic basis of floret fertility. The locus Grain Number Increase 1 (GNI1) is shown here to be an important contributor to floret fertility. GNI1 evolved in the Triticeae through gene duplication. The gene, which encodes a homeodomain leucine zipper class I (HD-Zip I) transcription factor, was expressed most abundantly in the most apical floret primordia and in parts of the rachilla, suggesting that it acts to inhibit rachilla growth and development. The level of GNI1 expression has decreased over the course of wheat evolution under domestication, leading to the production of spikes bearing more fertile florets and setting more grains per spikelet. Genetic analysis has revealed that the reduced-function allele GNI-A1 contributes to the increased number of fertile florets per spikelet. The RNAi-based knockdown of GNI1 led to an increase in the number of both fertile florets and grains in hexaploid wheat. Mutants carrying an impaired GNI-A1 allele out-yielded WT allele carriers under field conditions. The data show that gene duplication generated evolutionary novelty affecting floret fertility while mutations favoring increased grain production have been under selection during wheat evolution under domestication.
Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae
Background Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe’s evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. Results The read data was used to assemble the plastid locus ndh F for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus -Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. Conclusions The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.
Molecular phylogeny and divergence times of Astragalus section Hymenostegis: An analysis of a rapidly diversifying species group in Fabaceae
The taxa of Astragalus section Hymenostegis are an important element of mountainous and steppe habitats in Southwest Asia. A phylogenetic hypothesis of sect. Hymenostegis has been obtained from nuclear ribosomal DNA internal transcribed spacer (ITS) and plastid ycf 1 sequences of up to 303 individuals from 106 species, including all 89 taxa currently assigned to sect. Hymenostegis , 14 species of other Astragalus sections, and two species of Oxytropis and one Biserrula designated as outgroups. Bayesian phylogenetic inference and parsimony analyses reveal that three species from two other closely related sections group within sect. Hymenostegis , making the section paraphyletic. DNA sequence diversity is generally very low among Hymenostegis taxa, which is consistent with recent diversification of the section. We estimate that diversification in sect. Hymenostegis occurred in the middle to late Pleistocene, with many species arising only during the last one million years, when environmental conditions in the mountain regions of Southwest and Central Asia cycled repeatedly between dry and more humid conditions.
Linkage mapping identifies a non-synonymous mutation in FLOWERING LOCUS T (FT-B1) increasing spikelet number per spike
Total spikelet number per spike (TSN) is a major component of spike architecture in wheat ( Triticum aestivum L.). A major and consistent quantitative trait locus (QTL) was discovered for TSN in a doubled haploid spring wheat population grown in the field over 4 years. The QTL on chromosome 7B explained up to 20.5% of phenotypic variance. In its physical interval (7B: 6.37–21.67 Mb), the gene FLOWERING LOCUS T ( FT-B1 ) emerged as candidate for the observed effect. In one of the parental lines, FT-B1 carried a non-synonymous substitution on position 19 of the coding sequence. This mutation modifying an aspartic acid (D) into a histidine (H) occurred in a highly conserved position. The mutation was observed with a frequency of ca. 68% in a set of 135 hexaploid wheat varieties and landraces, while it was not found in other plant species. FT-B1 only showed a minor effect on heading and flowering time (FT) which were dominated by a major QTL on chromosome 5A caused by segregation of the vernalization gene VRN-A1 . Individuals carrying the FT-B1 allele with amino acid histidine had, on average, a higher number of spikelets (15.1) than individuals with the aspartic acid allele (14.3) independent of their VRN-A1 allele. We show that the effect of TSN is not mainly related to flowering time; however, the duration of pre-anthesis phases may play a major role.
Linkage mapping identifies a non-synonymous mutation in FLOWERINGLOCUST (FT-B1) increasing spikelet number per spike
Total spikelet number per spike (TSN) is a major component of spike architecture in wheat ( Triticum aestivum L.). A major and consistent quantitative trait locus (QTL) was discovered for TSN in a doubled haploid spring wheat population grown in the field over 4 years. The QTL on chromosome 7B explained up to 20.5% of phenotypic variance. In its physical interval (7B: 6.37–21.67 Mb), the gene FLOWERING LOCUS T ( FT-B1 ) emerged as candidate for the observed effect. In one of the parental lines, FT-B1 carried a non-synonymous substitution on position 19 of the coding sequence. This mutation modifying an aspartic acid (D) into a histidine (H) occurred in a highly conserved position. The mutation was observed with a frequency of ca. 68% in a set of 135 hexaploid wheat varieties and landraces, while it was not found in other plant species. FT-B1 only showed a minor effect on heading and flowering time (FT) which were dominated by a major QTL on chromosome 5A caused by segregation of the vernalization gene VRN-A1 . Individuals carrying the FT-B1 allele with amino acid histidine had, on average, a higher number of spikelets (15.1) than individuals with the aspartic acid allele (14.3) independent of their VRN-A1 allele. We show that the effect of TSN is not mainly related to flowering time; however, the duration of pre-anthesis phases may play a major role.
Dated Phylogeny of Astragalus Section Stereothrix (Fabaceae) and Allied Taxa in the Hypoglottis Clade
The Astragalus subgenus Hypoglottis Bunge, which consists of several sections, is one of the taxonomically most complicated groups in the genus. The Astragalus section Stereothrix Bunge belongs to this subgenus and is a significant element of the Irano-Turanian floristic region. A molecular phylogenetic analysis of this section and its closely related taxa using nuclear ribosomal DNA internal transcribed spacers (ITS) and external transcribed spacer (ETS) regions as well as plastid matK sequences were conducted. Parsimony analyses and Bayesian phylogenetic inference revealed that the section is not monophyletic in its current form, as some taxa belonging to closely related sections such as Hypoglottidei DC. and the Malacothrix Bunge group within the sect. Stereothrix render it paraphyletic. Moreover, species groups belonging to sect. Stereothrix are placed in different clades within the phylogenetic tree of subgenus Hypoglottis, which indicates polyphyly, i.e., multiple independent origins of taxa placed in the sect. Stereothrix. Molecular dating of the group estimated an age of 3.62 (1.73–5.62) My for this assemblage with the major diversification events happening during the last 2 My. Many species groups separated only within the last 0.5 to 1 My. Based on morphological and molecular data, we discuss the phylogenetic relationships of the groups and synonymy of species. In addition, the included taxa of sect. Hypoglottidei are not monophyletic and include species belonging to sects. Hololeuce, Koelziana, Malacothrix, Onobrychoideae, and Ornithodpodium group within the sect. Stereothrix taxa. We conclude that only an analysis including all groups and nearly all species of the sections within the Hypoglottis clade can finally result in an new evolutionary-based system for these taxa.
Genetic Architecture of Anther Extrusion in Spring and Winter Wheat
Hybrid wheat breeding is gaining prominence worldwide because it ensures higher and more static yield than conventionally bred varieties. The cleistogamous floral architecture of wheat ( L.) impedes anthers inside the floret, making it largely an inbreeder. For hybrid seed production, high anther extrusion is needed to promote cross pollination and to ensure a high level of pollen availability for the seed plant. This study, therefore, aimed at the genetic dissection of anther extrusion (AE) in panels of spring (SP), and winter wheat (WP) accessions by genome wide association studies (GWAS). We performed GWAS to identify the SNP markers potentially linked with AE in each panel separately. Phenotypic data were collected for 3 years for each panel. The average levels of Pearson's correlation ( ) among all years and their best linear unbiased estimates (BLUEs) within both panels were high ( (SP) = 0.75, < 0.0001; (WP) = 0.72, < 0.0001). Genotypic data (with minimum of 0.05 minor allele frequency applied) included 12,066 and 12,191 SNP markers for SP and WP, respectively. Both genotypes and environment influenced the magnitude of AE. In total, 23 significant (|log ( )| > 3.0) marker trait associations (MTAs) were detected (SP = 11; WP = 12). Anther extrusion behaved as a complex trait with significant markers having either favorable or unfavorable additive effects and imparting minor to moderate levels of phenotypic variance ( -14.24%; ( ) = 9.44-16.98%). All mapped significant markers as well as the markers within their significant linkage disequilibrium ( ≥ 0.30) regions were blasted against wheat genome assembly (IWGSC1+popseq) to find the corresponding genes and their high confidence descriptions were retrieved. These genes and their orthologs in , and revealed syntenic genomic regions potentially involved in flowering-related traits. Moreover, the expression data of these genes suggested potential candidates for AE. Our results suggest that the use of significant markers can help to introduce AE in high yielding varieties to increase cross fertilization rates and improve hybrid-seed production in wheat.
Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping
Background Chamomile ( Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active. In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content. Results GBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91  M. recutita plants from 33 origins (2–4 genotypes each) and 4  M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds. Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant ( P  < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana , whereas four sequences harbouring SNPs associated with alpha-bisabolol were identified to be involved in plant biotic and abiotic stress response in various plants species. Conclusions The first genomic resource for future applications to enhance breeding in chamomile was created, andanalyses of diversity will facilitate the exploitation of these genetic resources. The GWAS data pave the way for future research towards the genetics underlying important traits in chamomile, the identification of marker-trait associations, and development of reliable markers for practical breeding.
Progenitor-Derivative Relationships of Hordeum Polyploids (Poaceae, Triticeae) Inferred from Sequences of TOPO6, a Nuclear Low-Copy Gene Region
Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase.