Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
597 result(s) for "Bravo, Daniel"
Sort by:
Bacterial Cadmium-Immobilization Activity Measured by Isothermal Microcalorimetry in Cacao-Growing Soils From Colombia
In cacao farms, the presence of cadmium (Cd) is a major issue for commercialization, particularly for countries such as Colombia. Cadmium-tolerant bacteria (CdtB) are an important functional group of microorganisms with a potential for bioremediation strategies. Cd immobilization activity by CdtB can be accurately measured by isothermal microcalorimetry (IMC). In this study, the metabolic capacity of an entire CdtB community in cacao farm soils from three cacao-producing districts of Colombia, with and without the addition of Cd was measured using IMC. The differences between the observed peaks in metabolic activity related to Cd immobilization were analysed to determine whether activation of CdtB populations occurred when Cd content was increased. The thermograms from Santander soil samples have a major metabolic activity of the CdtB community compared to peaks of maximal heat-flow in the samples from Antioquia and Arauca. IMC showed differences in Cd immobilization ratios of the soil samples of 0.11–0.30 mg kg −1  h −1 at 25°C over 12 days of thermal monitoring. Furthermore, the amplicons of cadA and smt genes from the soil samples allow elucidation of possible metabolic mechanisms used by CdtB soil populations. The gene amplification confirmed the existence of CdtB populations related to both bioweathering and biochelating metabolic capacities. Scanning electron microscope (SEM) images supported the existence of otavite biologically induced by CdtB naturally. A Pearson correlation analysis was made between kinetical growth parameters and thermodynamic data. Besides, a PCA was performed between CdtB cadA gene copies, soil pH and SOM indicating the effect of CdtB in Cd translocation. Thus, it is concluded that the combination of Cd immobilization ratios obtained using isothermal microcalorimetry, the molecular basis of metabolic immobilization, and SEM imagery could act as a useful toolkit to identify CdtB populations for bioremediation strategies in contaminated cacao farms. The research importance of this study is the use of combined tools for quantitative IMC measurements to identify and assess Cd metabolic capacities of CdtB populations in soil, in situ , as a new proxy for CdtB assessment in cacao-growing soils.
The Use of a Two-Dimensional Electrical Resistivity Tomography (2D-ERT) as a Technique for Cadmium Determination in Cacao Crop Soils
Cadmium (Cd) is a non-essential heavy metal naturally occurring in the earth’s crust or due to anthropogenic activity. The presence of this metal in cacao farm soils represents a significant issue as levels are now regulated in products derived from cacao beans (Theobroma cacao L.). Several strategies have been proposed to measure cadmium levels; however, little is known regarding in situ non-destructive and time efficient techniques to analyze Cd contents in both cacao topsoils and subsoils, particularly nearby the root system. Therefore, this research aims to integrate the physical property of soil resistivity to Cd content in cacao soils. Cd hot spots are estimated from resistivity measurements using a two-dimensional electrical resistivity tomography (2D-ERT) technique and correlated to Cd determination using inductively coupled plasma optical emission spectrometry (ICP-OES). To assess the dynamics of soil Cd content the correlation is discussed with other physical chemical parameters of soils (pH, organic matter, Ca, Fe, and P). The study was performed in 27 cacao farms in Colombia. A farm in Santander district proved to have the highest level of Cd using the correlated techniques (2.76 mg·kg−1 Cd and 1815 Ohm·m) followed by farms in Boyacá and Arauca districts (2.6 and 0.66 mg·kg−1 Cd, related to 1616 and 743 Ohm·m, respectively). A high correlation between 2D-ERT and Cd determination (R2 = 0.87) was found. The discussion regarding the soil parameters analyzed suggests that the 2D-ERT technique could be used as a preliminary approach to explore Cd distribution in cacao soils.
Potential of pest regulation by insectivorous birds in Mediterranean woody crops
Regulation of agricultural pests managing their natural enemies represents an alternative to chemical pesticides. We assessed the potential of insectivorous birds as pest regulators in woody crops located in central Spain. A total of 417 nest boxes installed in five field study sites (one vineyard, two fruit orchards, and two olive groves) were monitored for use and breeding of insectivorous birds and other species for four consecutive years (2013-2016). At all field sites except the two olive groves, where birds never occupied the nest boxes, predation experiments were conducted with Greater wax moth (Galleria mellonella) sentinel caterpillars, and food consumption by birds was estimated. Nesting of insectivorous birds, chiefly Great tit (Parus major), and sparrows (Passer domesticus and P. montanus) increased over time, averaging 60% per field site in the vineyard and fruit orchards by the fourth year. Use of nest boxes by sparrows and by Garden dormouse (Eliomys quercinus) was high at the fruit orchards (70%) and the vineyard (30%), respectively. Micro-habitat characteristics (nest box level) and meso-habitat characteristics (patch level) strongly affected use of nest boxes and bird breeding (i.e. number of laid eggs and produced chicks) in different years. Distance to natural or semi-natural vegetation did not consistently affect bird breeding, nor did we see consistent evidence of competition between adjacent breeding birds. Predation rates of sentinel caterpillars were approximately one-third higher near boxes with nesting birds (31.51 ± 43.13%) than at paired distant areas without nest boxes (22.45% ± 38.58%). Food consumption by insectivorous birds per ha and breeding season were conservatively estimated to range from 0.02 kg in one fruit orchard to 0.15 kg in the vineyard. We conclude that installation of nest boxes in Mediterranean woody crops enhances populations of insectivorous birds that regulate pests, but that the effects are moderate and highly context-dependent.
Characterization of the microbiome of Aedes albopictus populations in different habitats from Spain and São Tomé
The mosquito microbiome significantly influences vector competence, including in Aedes albopictus , a globally invasive vector. Describing the microbiome and Wolbachia strains of Ae. albopictus from different regions can guide area-specific control strategies. Mosquito samples from Spain and São Tomé were analyzed using 16S rRNA gene sequencing and metagenomic sequencing. Wolbachia infection patterns were observed by sex and population. Female mosquitoes were blood-fed, a factor considered in analyzing their microbiota. Results revealed a dominance of dual Wolbachia infections, strains A and B, in the microbiome of both populations of Ae. albopictus , especially among females. Both populations shared a core microbiome, although 5 and 9 other genera were only present in Spain and São Tomé populations, respectively. Genera like Pelomonas and Nevskia were identified for the first time in Aedes mosquitoes. This study is the first to describe the Ae. albopictus bacteriome in Spain and São Tomé, offering insights for the development of targeted mosquito control strategies. Understanding the specific microbiome composition can help in designing more effective interventions, such as microbiome manipulation and Wolbachia -based approaches, to reduce vector competence and transmission potential of these mosquitoes.
La Corte de Apelaciones de La Serena: orígenes, instalación y primeras décadas de funcionamiento (1845-1875)
ABSTRACT This article examines the creation and installation of the Court of Appeals of La Serena and its first years of operation, based on official documentation, specialized literature, and national and local historiographical texts. [...]this work reviews the parliamentary debate of the law that originated it in 1845, where it was discussed whether it was the right time to create courts of appeals outside of Santiago. [...]it refers to the role that corresponded to it during the transition period towards the national codified law. The work extends its analysis until 1875, with the promulgation of law of organization and attributions of the courts, which initiated important adjustments in the organic structure of the Chilean judiciary system. KEY WORDS Court of Appeals - La Serena - appellate courts - Chilean judiciary system - 19th INTRODUCCIÓN·· En Chile, las Cortes de Apelaciones son los tribunales de segunda instancia por antonomasia, al tratarse de los órganos jurisdiccionales encargados de conocer y fallar los recursos de apelación y otros mecanismos de impugnación interpuestos en contra de las decisiones de los tribunales de primera instancia, sin perjuicio de otros asuntos que conocen y resuelven en primera o única instancia1.
Staphylococcus aureus in the Processing Environment of Cured Meat Products
The presence of Staphylococcus aureus in six dry-cured meat-processing facilities was investigated. S. aureus was detected in 3.8% of surfaces from five facilities. The occurrence was clearly higher during processing (4.8%) than after cleaning and disinfection (1.4%). Thirty-eight isolates were typified by PFGE and MLST. Eleven sequence types (STs) were defined by MLST. ST30 (32%) and ST12 (24%) were the most abundant. Enterotoxin genes were detected in 53% of isolates. The enterotoxin A gene (sea) was present in all ST30 isolates, seb in one ST1 isolate, and sec in two ST45 isolates. Sixteen isolates harbored the enterotoxin gene cluster (egc) with four variations in the sequence. The toxic shock syndrome toxin gene (tst) was detected in 82% of isolates. Regarding antimicrobial resistance, twelve strains were susceptible to all the antibiotics tested (31.6%). However, 15.8% were resistant to three or more antimicrobials and, therefore, multidrug-resistant. Our results showed that in general, efficient cleaning and disinfection procedures were applied. Nonetheless, the presence of S. aureus with virulence determinants and resistance to antimicrobials, particularly multidrug-resistant MRSA ST398 strains, might represent a potential health hazard for consumers.
Genetic profile for the detection of susceptibility to poisoning by exposure to pesticides
Introduction: In humans, there are sets of genes that encode enzymes that decrease or increase the risks derived from exposure to pesticides. These include DNA repair genes (XRCC1, OGG1 and XRCC4); pesticide metabolizers (GSTP1 and PON1), and genes that act against oxidative stress (SOD2 and NQO1). Objective: The aim of this literature review is to provide information about the genes involved in the defence systems against exposure to pesticides, as well as their polymorphisms, functions, and general characteristics of the encoded enzymes. Material and Methods: Information was obtained from scientific articles published between 2015–2020 in the PubMed database (https://pubmed.ncbi.nlm.nih.gov). Results: Genes related to the defence processes against pesticides present single-nucleotide polymorphisms (SNPs) with allelic variants that affect the expressions or structures of the encoded enzymes, negatively altering their activities. If we knew the genetic profile that includes polymorphisms of DNA-repairing genes, metabolizing genes, and genes against oxidative stress in subjects exposed to pesticides, we would also know about their susceptibility to poisoning caused by these chemicals. Conclusions: The genes could be used to propose a genetic profile in farmers exposed to various pesticides, including 10 gene polymorphisms involved in susceptibility to various pathologies related to DNA repair, xenobiotic metabolism, and oxidative stress. It could also be useful as a preventive measure to identify susceptibility to pesticide poisoning.
Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform
Saccharomyces cerevisiae bearing engineered alginate and mannitol catabolic pathways can ferment sugars from brown macroalgae to produce ethanol, potentially allowing the use of brown macroalgae as a viable feedstock for the production of biofuels and renewable chemicals. Brown algae as a biofuel feedstock Brown macroalgae are seen as a viable feedstock for the production of biofuels, with the advantage that they can be farmed in coastal waters without using valuable arable land. However, the most abundant sugars in brown macroalgae are alginate, mannitol and glucan, and the full potential of this feedstock cannot be realized without extensive re-engineering of the alginate and mannitol catabolic pathways in Saccharomyces cerevisiae . In this paper the authors identify a 4-deoxy-L-erythro-5-hexoseulose uronate transporter in Asteromyces cruciatus brown algae and use it to develop a S. cerevisiae strain that can use the unique sugars in brown macroalgae for high-efficiency ethanol fermentation. With appropriate genetic modifications, this synthetic biology platform can be used to produce many other biofuels and renewable chemicals. The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways 1 , 2 , 3 in the standard industrial microbe Saccharomyces cerevisiae . Here we present the discovery of an alginate monomer (4-deoxy- l -erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus 4 . The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l −1 ) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.
The First National Survey of Cadmium in Cacao Farm Soil in Colombia
This study represents the first nationwide survey regarding the distribution of Cd content in cacao-growing soils in Colombia. The soil Cd distribution was analyzed using a cold/hotspots model. Moreover, both descriptive and predictive analytical tools were used to assess the key factors regulating the Cd concentration, considering Cd content and eight soil variables in the cacao systems. A critical discussion was performed in four main cacao-growing districts. Our results suggest that the performance of a model using all the variables will always be superior to the one using Zn alone. The analyzed variables featured an appropriate predictive performance, nonetheless, that performance has to be improved to develop a prediction method that might be used nationwide. Results from the fitted graphical models showed that the largest associations (as measured by the partial correlation coefficients) were those between Cd and Zn. Ca had the second-largest partial correlation with Cd and its predictive performance ranked second. Interestingly, it was found that there was a high variability in the factors correlated with Cd in cacao growing soils at a national level. Therefore, this study constitutes a baseline for the forthcoming studies in the country and should be reinforced with an analysis of cadmium content in cacao beans.
Unravelling the mosquito-haemosporidian parasite-bird host network in the southwestern Iberian Peninsula: insights into malaria infections, mosquito community and feeding preferences
Bakground Vector-borne diseases affecting humans, wildlife and livestock have significantly increased their incidence and distribution in the last decades. Because the interaction among vectors-parasite-vertebrate hosts plays a key role driving vector-borne disease transmission, the analyses of the diversity and structure of vector-parasite networks and host-feeding preference may help to assess disease risk. Also, the study of seasonal variations in the structure and composition of vector and parasite communities may elucidate the current patterns of parasite persistence and spread as well as facilitate prediction of how climate variations may impact vector-borne disease transmission. Avian malaria and related haemosporidian parasites constitute an exceptional model to understand the ecology and evolution of vector-borne diseases. However, the characterization of vector-haemosporidian parasite-bird host assemblages is largely unknown in many regions. Methods Here, we analyzed 5859 female mosquitoes captured from May to November in five localities from southwestern Spain to explore the composition and seasonal variation of the vector-parasite-vertebrate host network. Results We showed a gradual increase in mosquito abundance, peaking in July. A total of 16 different haemosporidian lineages were found infecting 13 mosquito species. Of these assemblages, more than 70% of these vector-parasite associations have not been described in previous studies. Moreover, three Haemoproteus lineages were reported for the first time in this study. The prevalence of avian malaria infections in mosquitoes varied significantly across the months, reaching a maximum in November. Mosquito blood-feeding preference was higher for mammals (62.5%), whereas 37.5% of vectors fed on birds, suggesting opportunistic feeding behavior. Conclusion These outcomes improve our understanding of disease transmission risk and help tovector control strategies. Graphical abstract