Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Braziunas, Kristin H."
Sort by:
Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests
by
Hansen, Winslow D.
,
Turner, Monica G.
,
Harvey, Brian J.
in
Biological Sciences
,
Biomass
,
Biomass burning
2019
Subalpine forests in the northern Rocky Mountains have been resilient to stand-replacing fires that historically burned at 100- to 300-year intervals. Fire intervals are projected to decline drastically as climate warms, and forests that reburn before recovering from previous fire may lose their ability to rebound. We studied recent fires in Greater Yellowstone (Wyoming, United States) and asked whether short-interval (< 30 years) stand-replacing fires can erode lodgepole pine (Pinus contorta var. latifolia) forest resilience via increased burn severity, reduced early postfire tree regeneration, reduced carbon stocks, and slower carbon recovery. During 2016, fires reburned young lodgepole pine forests that regenerated after wildfires in 1988 and 2000. During 2017, we sampled 0.25-ha plots in stand-replacing reburns (n = 18) and nearby young forests that did not reburn (n = 9). We also simulated stand development with and without reburns to assess carbon recovery trajectories. Nearly all prefire biomass was combusted (“crown fire plus”) in some reburns in which prefire trees were dense and small (≤4-cm basal diameter). Postfire tree seedling density was reduced sixfold relative to the previous (long-interval) fire, and high-density stands (>40,000 stems ha−1) were converted to sparse stands (< 1,000 stems ha−1). In reburns, coarse wood biomass and aboveground carbon stocks were reduced by 65 and 62%, respectively, relative to areas that did not reburn. Increased carbon loss plus sparse tree regeneration delayed simulated carbon recovery by > 150 years. Forests did not transition to nonforest, but extreme burn severity and reduced tree recovery fore-shadow an erosion of forest resilience.
Journal Article
Young forests and fire: Using lidar–imagery fusion to explore fuels and burn severity in a subalpine forest reburn
by
Braziunas, Kristin H.
,
Abendroth, Diane C.
,
Turner, Monica G.
in
biomass
,
burn severity
,
Canopies
2022
Anticipating fire behavior as climate change and fire activity accelerate is an increasingly pressing management challenge in fire‐prone landscapes. In subalpine forests adapted to infrequent, stand‐replacing fire, self‐limitation of burn severity in short‐interval fire is incompletely understood. Spatially explicit fuels data can support assessments of landscape‐scale fire risk and fuel feedbacks on burn severity. For a ~1450‐km2 largely forested landscape in the US Northern Rocky Mountains, we used airborne lidar and imagery to predict and map canopy and surface fuels. In a fire that burned mature (>125‐year‐old) and also reburned young (~30‐year‐old) subalpine forest, we then asked: (1) How do prefire fuels and burn severity compare between young and mature forests that burned under similar fire weather conditions? (2) How well do prefire fuels and forest structure predict burn severity under extreme versus moderate fire weather? Lidar–imagery fusion predicted fuel characteristics with high accuracy across forest and shrubland vegetation. Young postfire forests had abundant, densely packed canopy fuels, and both young and mature forests had similar canopy fuel loads and coarse wood biomass. Under similar weather conditions, young and mature forests burned at similar severity. Overall, fuels were weak predictors of burn severity and, surprisingly, better predicted severity under extreme rather than moderate fire weather. Our findings are relevant for subalpine landscapes increasingly dominated by young lodgepole pine (Pinus contorta var. latifolia) forests vulnerable to short‐interval fire and provide a benchmark to assess how fuels influence burn severity in future fires. Fire managers should continually reassess fuels and update expectations about fire behavior as landscapes change. Although recovering postfire forests can limit fire spread and severity for a period of time, our results suggest that young subalpine forests in the Northern Rocky Mountains have sufficient fuel loads to burn at high severity and should not be considered effective fire breaks.
Journal Article
Tree regeneration in models of forest dynamics: A key priority for further research
by
Díaz‐Yáñez, Olalla
,
Fischer, Rico
,
Käber, Yannek
in
Biodiversity
,
Central European region
,
Climate change
2024
Tree regeneration is a key process in forest dynamics, particularly in the context of forest resilience and climate change. Models are pivotal for assessing long‐term forest dynamics, and they have been in use for more than 50 years. However, there is a need to evaluate their capacity to accurately represent tree regeneration. We assess how well current models capture the overall abundance, species composition, and mortality of tree regeneration. Using 15 models built to capture long‐term forest dynamics at the stand, landscape, and global levels, we simulate tree regeneration at 200 sites representing large environmental gradients across Central Europe. The results are evaluated against extensive data from unmanaged forests. Most of the models overestimate recruitment levels, which is compensated only in some models by high simulated mortality rates in the early stages of individual‐tree dynamics. Simulated species diversity of recruitment generally matches observed ranges. Models simulating higher stand‐level species diversity do not feature higher species diversity in the recruitment layer. The effect of light availability on recruitment levels is captured better than the effects of temperature and soil moisture, but patterns are not consistent across models. Increasing complexity in the tree regeneration modules is not related to higher accuracy of simulated tree recruitment. Furthermore, individual model design is more important than scale (stand, landscape, and global) and approach (empirical and process‐based) for accurately capturing tree regeneration. Despite the mismatches between simulation results and data, it is remarkable that most models capture the essential features of the highly complex process of tree regeneration, while not having been parameterized with such data. We conclude that much can be gained by evaluating and refining the modeling of tree regeneration processes. This has the potential to render long‐term projections of forest dynamics under changing environmental conditions much more robust.
Journal Article
Effects of climate and forest development on habitat specialization and biodiversity in Central European mountain forests
2024
Mountain forests are biodiversity hotspots with competing hypotheses proposed to explain elevational trends in habitat specialization and species richness. The
altitudinal-niche-breadth hypothesis
suggests decreasing specialization with elevation, which could lead to decreasing species richness and weaker differences in species richness and beta diversity among habitat types with increasing elevation. Testing these predictions for bacteria, fungi, plants, arthropods, and vertebrates, we found decreasing habitat specialization (represented by forest developmental stages) with elevation in mountain forests of the Northern Alps – supporting the
altitudinal-niche-breadth hypothesis
. Species richness decreased with elevation only for arthropods, whereas changes in beta diversity varied among taxa. Along the forest developmental gradient, species richness mainly followed a U-shaped pattern which remained stable along elevation. This highlights the importance of early and late developmental stages for biodiversity and indicates that climate change may alter community composition not only through distributional shifts along elevation but also across forest developmental stages.
Species richness across taxa showed U-shaped patterns along a forest development gradient in the northern Alps, which remained stable with elevation. Habitat specialization decreased for all taxa and beta diversity varied across taxa with elevation.
Journal Article
It takes a few to tango
2018
Environmental change is accelerating in the 21st century, but how multiple drivers may interact to alter forest resilience remains uncertain. In forests affected by large high-severity disturbances, tree regeneration is a resilience linchpin that shapes successional trajectories for decades. We modeled stands of two widespread western U.S. conifers, Douglas-fir (Pseudotsuga menziesii var. glauca), and lodgepole pine (Pinus contorta var. latifolia), in Yellowstone National Park (Wyoming, USA) to ask (1) What combinations of distance to seed source, fire return interval, and warming-drying conditions cause postfire tree-regeneration failure? (2) If postfire tree regeneration was successful, how does early tree density differ under future climate relative to historical climate? We conducted a stand-level (1 ha) factorial simulation experiment using the individual-based forest process model iLand to identify combinations of fire return interval (11–100 yr), distance to seed source (50–1,000 m), and climate (historical, mid-21st century, late-21st century) where trees failed to regenerate by 30-yr postfire. If regeneration was successful, we compared stand densities between climate periods. Simulated postfire regeneration were surprisingly resilient to changing climate and fire drivers. Douglas-fir regeneration failed more frequently (55%) than lodgepole pine (28% and 16% for non-serotinous and serotinous stands, respectively). Distance to seed source was an important driver of regeneration failure for Douglas-fir and non-serotinous lodgepole pine; regeneration never failed when stands were 50 m from a seed source and nearly always failed when stands were 1 km away. Regeneration of serotinous lodgepole pine only failed when fire return intervals were ≤20 yr and stands were far (1 km) from a seed source. Warming climate increased regeneration success for Douglas-fir but did not affect lodgepole pine. If regeneration was successful, postfire density varied with climate. Douglas-fir and serotinous lodgepole pine regeneration density both increased under 21st-century climate but in response to different climate variables (growing season length vs. cold limitation). Results suggest that, given a warmer future with larger and more frequent fires, a greater number of stands that fail to regenerate after fires combined with increasing density in stands where regeneration is successful could produce a more coarse-grained forest landscape.
Journal Article
Can we manage a future with more fire? Effectiveness of defensible space treatment depends on housing amount and configuration
2021
ContextFire in forested wildland urban interface (WUI) landscapes is increasing throughout the western United States. Spatial patterns of fuels treatments affect fire behavior, but it is unclear how fire risk and fuel treatment effectiveness will change under future conditions.Objectives(1) How do area burned, forest and fuel characteristics, and fire risk change over time under twenty-first-century climate? (2) When defensible space fuels treatments are applied around all houses, which scenarios of WUI housing amount and configuration minimize fire risk?MethodsIn generic 10,000-ha US Northern Rocky Mountain subalpine forest landscapes, we simulated 21 scenarios differing in fuels treatment, housing amount and configuration (neutral landscape models), and projected future climate using the process-based model iLand. We compared fire risk at three scales: 1-ha home ignition zone (HIZ), 9-ha safe suppression zone (SSZ), and landscape.ResultsUnder warm-dry climate, annual area burned increased, but area burned at high fire intensity peaked in the 2060s and then declined sharply; fire risk followed similar trends. Defensible space treatments maintained low flame lengths in HIZs. Clustered housing was more effective at reducing SSZ risk compared to dispersed housing. At landscape scales, treating more of the landscape reduced fire risk but configuration was unimportant.ConclusionsThe most effective strategy for reducing fire risk depends on the scale at which risk is assessed. Clustering WUI developments and treating between 10 and 30% of the landscape every 10 years can reduce fire risk across multiple scales.
Journal Article
The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire
by
Westerling, A. Leroy
,
Braziunas, Kristin H.
,
Ratajczak, Zak
in
Abies lasiocarpa
,
abrupt change
,
Aridity
2022
As temperatures continue rising, the direction, magnitude, and tempo of change in disturbance-prone forests remain unresolved. Even forests long resilient to stand-replacing fire face uncertain futures, and efforts to project changes in forest structure and composition are sorely needed to anticipate future forest trajectories. We simulated fire (incorporating fuels feedbacks) and forest dynamics on five landscapes spanning the Greater Yellowstone Ecosystem (GYE) to ask the following questions: (1) How and where are forest landscapes likely to change with 21st-century warming and fire activity? (2) Are future forest changes gradual or abrupt, and do forest attributes change synchronously or sequentially? (3) Can forest declines be averted by mid-21st-century stabilization of atmospheric greenhouse gas (GHG) concentrations? We used the spatially explicit individual-based forest model iLand to track multiple attributes (forest extent, stand age, tree density, basal area, aboveground carbon stocks, dominant forest types, species occupancy) through 2100 for six climate scenarios. Hot-dry climate scenarios led to more fire, but stand-replacing fire peaked in mid-century and then declined even as annual area burned continued to rise. Where forest cover persisted, previously dense forests were converted to sparse young woodlands. Increased aridity and fire drove a ratchet of successive abrupt declines (i.e., multiple annual landscape-level changes ≥20%) in tree density, basal area, and extent of older (>150 yr) forests, whereas declines in carbon stocks and mean stand age were always gradual. Forest changes were asynchronous across landscapes, but declines in stand structure always preceded reductions in forest extent and carbon stocks. Forest decline was most likely in less topographically complex landscapes dominated by fire-sensitive tree species (Picea engelmannii, Abies lasiocarpa, Pinus contorta var. latifolia) and where fire resisters (Pseudotsuga menziesii var. glauca) were not already prevalent. If current GHG emissions continue unabated (RCP 8.5) and aridity increases, a suite of forest changes would transform the GYE, with cascading effects on biodiversity and myriad ecosystem services. However, stabilizing GHG concentrations by mid-century (RCP 4.5) would slow the ratchet, moderating fire activity and dampening the magnitude and rate of forest change. Monitoring changes in forest structure may serve as an operational early warning indicator of impending forest decline.
Journal Article
Microclimate temperature effects propagate across scales in forest ecosystems
2025
Context
Forest canopies shape subcanopy environments, affecting biodiversity and ecosystem processes. Empirical forest microclimate studies are often restricted to local scales and short-term effects, but forest dynamics unfold at landscape scales and over long time periods.
Objectives
We developed the first explicit and dynamic implementation of microclimate temperature buffering in a forest landscape model and investigated effects on simulated forest dynamics and outcomes.
Methods
We adapted the individual-based forest landscape and disturbance model iLand to use microclimate temperature for three processes [decomposition, bark beetle (
Ips typographus
L.) development, and tree seedling establishment]. We simulated forest dynamics with or without microclimate temperature buffering in a temperate European mountain landscape under historical climate and disturbance conditions.
Results
Temperature buffering effects propagated from local to landscape scales. After 1,000 simulation years, average total carbon and cumulative net ecosystem productivity were 2% and 21% higher, respectively, and tree species composition differed in simulations including versus excluding microclimate buffering. When microclimate buffering was included, Norway spruce (
Picea abies
(L.) Karst.) increased by 9% and European beech (
Fagus sylvatica
L.) decreased by 12% in mean basal area share. Some effects were amplified across scales, such as a mean 16% decrease in local-scale bark beetle development rates resulting in a mean 45% decrease in landscape-scale bark beetle-caused mortality.
Conclusions
Microclimate effects on forests scaled nonlinearly from stand to landscape and days to millennia, underlining the utility of complex simulation models for dynamic upscaling in space and time. Microclimate temperature buffering can alter forest dynamics at landscape scales.
Journal Article
Tree regeneration in models of forest dynamics: A key priority for further researc
2024
Summary Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Journal Article
Operationalizing Resilience of Social-Ecological Systems to Changing Climate and Fire in US Northern Rocky Mountain Forests
2021
Current rates of change in climate and disturbance threaten ecosystem resilience, and means of operationalizing resilience in real-world landscapes are urgently needed. My dissertation tackles this knowledge gap by using multiple approaches to measure, anticipate, and manage for resilience in ecological systems (forests) and social-ecological systems [forested wildland urban interface (WUI) landscapes]. I investigated how changes in climate and fire affected conifer-dominated forests in the US Northern Rocky Mountains, asking: (1) how well remotely sensed data mapped forest fuels and how burn severity differed between young and mature forests; (2) how potential interactions between fire return interval and post-fire drought affected forest recovery and fuels in paired short- (< 30 year) and long- (> 125 year) interval fires; (3) how fuels treatment effectiveness varied with amount and configuration of houses and under changing climate using a process-based forest simulation model; and (4) how spatially contrasting fuels treatment strategies affected fire safety and forest ecosystem service supply in WUI landscapes. Lidar-imagery fusion accurately predicted forest fuels, and young subalpine forests burned at similar severity as mature forests. Post-fire tree stem density was nearly 10-fold lower following short- versus long-interval fires in subalpine forests; differences between paired plots increased with warmer-drier climate and were amplified farther from live forest. Declines in live fuels following short-interval fire could limit burn severity and fire intensity under increasing fire frequency. Treating approximately 30% of the WUI every 10 years reduced risk even under substantial climate change, and fire risk was lower in clustered versus dispersed WUI developments. However, climate and fire, rather than fuels treatment, were the dominant drivers of future forest ecosystem service supply, with most indicators declining by more than 80% by 2099. My work suggests multiple drivers will act synergistically to reduce forest resilience but increased reburning is likely to limit future fire behavior. WUI protection can meaningfully reduce fire risk but sustaining forest ecosystem services may be unattainable in fire-prone landscapes. If the current climate change trajectory continues, people will need to adapt to new ecosystems and adjust expectations of the services they can provide.
Dissertation