Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
136
result(s) for
"Brew, Bruce J."
Sort by:
Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity
by
Cysique, Lucette A.
,
Dermody, Nadene
,
Brew, Bruce J.
in
Acquired immune deficiency syndrome
,
AIDS
,
Analysis
2017
The longitudinal rate and profile of cognitive decline in persons with stable, treated, and virally suppressed HIV infection is not established. To address this question, the current study quantifies the rate of cognitive decline in a cohort of virally suppressed HIV+ persons using clinically relevant definitions of decline, and determine cognitive trajectories taking into account historical and baseline HAND status.
Ninety-six HIV+ (clinically stable and virally undetectable) and 44 demographically comparable HIV- participants underwent standard neuropsychological testing at baseline and 18-months follow-up. We described clinically relevant cognitive trajectories based on standard definitions of historical and baseline HAND status and cognitive decline. Historical, moderate to severe HAND was formally diagnosed at the start of the cART era in 15/96 participants based on clinical neurological and neuropsychological assessment. The same standard of care has been applied to all participants at St. Vincent's Hospital Infectious Disease Department for the duration of their HIV infection (median of 20 years).
Relative to HIV- controls (4.5%), 14% of HIV+ participants declined (p = .11), they also scored significantly lower on the global change score (p = .03), processing speed (p = .02), and mental flexibility/inhibition (p = .02) domains. Having HAND at baseline significantly predicted cognitive decline at follow up (p = .005). We determined seven clinically relevant cognitive trajectories taking into account whether participant has a history of HAND prior to study entry (yes/no); their results on the baseline assessment (baseline impairment: yes/no) and their results on the 18-month follow up (decline or stable) which in order of prevalence were: 1) No HAND history, no baseline impairment, 18-month follow-up stable (39%), 2) No HAND history, baseline impairment, 18-month follow-up stable (35%), 3) History of HAND; baseline impairment, 18-month follow-up stable (9%) 4) No history of HAND, baseline impairment, 18-month follow-up decline (7%), 5) History of HAND, no baseline impairment, 18-month follow-up stable (3%), 6) No HAND history, no baseline impairment, 18-month follow-up decline (3%) 7) History of HAND, baseline impairment, 18-month follow-up decline (3%). There was no relationship between cognitive decline (taking into account historical and baseline HAND) and traditional HIV disease biomarkers.
Despite long-term viral suppression, we found mostly subclinical levels of decline in psychomotor speed and executive functioning (mental flexibility and cognitive inhibition); well-established markers of HAND progression. Moreover, 57% of our cohort is undergoing slow evolution of their disease, challenging the notion of prevalent neurocognitive stability in virally suppressed HIV infection.
Journal Article
Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease
by
Jones, Simon P.
,
de Bie, Josien
,
Brew, Bruce J.
in
Activation
,
Biological response modifiers
,
Cytokines
2015
The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.
Journal Article
Expression of Tryptophan 2,3-Dioxygenase and Production of Kynurenine Pathway Metabolites in Triple Transgenic Mice and Human Alzheimer's Disease Brain
by
Nicolazzo, Joseph A.
,
Brew, Bruce J.
,
Chung, Roger
in
3-Hydroxyanthranilate 3,4-Dioxygenase - genetics
,
3-Hydroxyanthranilate 3,4-Dioxygenase - metabolism
,
Acids
2013
To assess the role of the kynurenine pathway in the pathology of Alzheimer's disease (AD), the expression and localization of key components of the kynurenine pathway including the key regulatory enzyme tryptophan 2,3 dioxygenase (TDO), and the metabolites tryptophan, kynurenine, kynurenic acid, quinolinic acid and picolinic acid were assessed in different brain regions of triple transgenic AD mice. The expression and cell distribution of TDO and quinolinic acid, and their co-localization with neurofibrillary tangles and senile β amyloid deposition were also determined in hippocampal sections from human AD brains. The expression of TDO mRNA was significantly increased in the cerebellum of AD mouse brain. Immunohistochemistry demonstrated that the density of TDO immuno-positive cells was significantly higher in the AD mice. The production of the excitotoxin quinolinic acid strongly increased in the hippocampus in a progressive and age-dependent manner in AD mice. Significantly higher TDO and indoleamine 2,3 dioxygenase 1 immunoreactivity was observed in the hippocampus of AD patients. Furthermore, TDO co-localizes with quinolinic acid, neurofibrillary tangles-tau and amyloid deposits in the hippocampus of AD. These results show that the kynurenine pathway is over-activated in AD mice. This is the first report demonstrating that TDO is highly expressed in the brains of AD mice and in AD patients, suggesting that TDO-mediated activation of the kynurenine pathway could be involved in neurofibrillary tangles formation and associated with senile plaque. Our study adds to the evidence that the kynurenine pathway may play important roles in the neurodegenerative processes of AD.
Journal Article
Kynurenine pathway modulation reverses the experimental autoimmune encephalomyelitis mouse disease progression
by
Guillemin, Gilles J.
,
Lim, Chai K.
,
Brew, Bruce J.
in
Animal models
,
Animals
,
Biomedical and Life Sciences
2020
Background
Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous system characterized by demyelination, neuroinflammation, and neurodegeneration. Activation of the kynurenine pathway (KP) results from acute and chronic neuroinflammation leading to both immune suppression and neurotoxicity. However, the exact effects of KP metabolites and changes in neurodegenerative diseases over time are not fully understood. Studies, including those in MS models, have reported that short-term KP activation is beneficial through immune tolerance. However, the effects of long-term KP activation are poorly understood. We hypothesized that such chronic activation is responsible for the neurodegeneration in MS, and further, modulating the KP in EAE-induced mice could significantly decrease the EAE disease severity.
Methods
We biochemically altered the KP at different stages of the disease in experimental allergic encephalomyelitis (EAE) mouse model of MS and at two different enzymatic levels of the KP (IDO-1 (indoleamine 2,3 dioxygenase)) and KMO (kynurenine monooxygenase). CNS tissue and blood samples were analyzed longitudinally using GCMS, HPLC, IHC, and RT-PCR.
Results
We showed that the KP was steadily upregulated correlating with disease severity and associated with a shift towards increasing concentrations of the KP metabolite quinolinic acid, a neuro- and gliotoxin. KP modulation by inhibition of IDO-1 with 1-methyl tryptophan (1-MT) was dependent on the timing of treatment at various stages of EAE. IDO-1 inhibition at EAE score 2 led to significantly higher numbers of FoxP3 cells (
p
< 0.001) in the spleen than earlier IDO-1 inhibition (prophylactic 1-MT treatment group (
p
< 0.001)), 1-MT treatment after EAE induction (EAE score 0;
p
< 0.001), and 1-MT treatment at EAE score of 1 (
p
< 0.05). Significant improvement of disease severity was observed in EAE mice treated with 1-MT at EAE score 2 compared to the untreated group (
p
< 0.05). KP modulation by KMO inhibition with Ro 61-8048 led to significantly greater numbers of Foxp3 cells (
p
< 0.05) in Ro 61-8048 treated mice and even more significant amelioration of EAE disease compared to the 1-MT treatment groups.
Conclusions
These results provide a new mechanistic link between neuroinflammation and neurodegeneration and point to KP modulation at the KMO level to preserve immune tolerance and limit neurodegeneration in EAE. They provide the foundation for new clinical trials for MS.
Journal Article
The Excitotoxin Quinolinic Acid Induces Tau Phosphorylation in Human Neurons
by
Cullen, Karen M.
,
Guillemin, Gilles J.
,
Brew, Bruce J.
in
Acids
,
Advertising executives
,
Alzheimer Disease - metabolism
2009
Some of the tryptophan catabolites produced through the kynurenine pathway (KP), and more particularly the excitotoxin quinolinic acid (QA), are likely to play a role in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the KP is over activated in AD brain and that QA accumulates in amyloid plaques and within dystrophic neurons. We hypothesized that QA in pathophysiological concentrations affects tau phosphorylation. Using immunohistochemistry, we found that QA is co-localized with hyperphosphorylated tau (HPT) within cortical neurons in AD brain. We then investigated in vitro the effects of QA at various pathophysiological concentrations on tau phosphorylation in primary cultures of human neurons. Using western blot, we found that QA treatment increased the phosphorylation of tau at serine 199/202, threonine 231 and serine 396/404 in a dose dependent manner. Increased accumulation of phosphorylated tau was also confirmed by immunocytochemistry. This increase in tau phosphorylation was paralleled by a substantial decrease in the total protein phosphatase activity. A substantial decrease in PP2A expression and modest decrease in PP1 expression were observed in neuronal cultures treated with QA. These data clearly demonstrate that QA can induce tau phosphorylation at residues present in the PHF in the AD brain. To induce tau phosphorylation, QA appears to act through NMDA receptor activation similar to other agonists, glutamate and NMDA. The QA effect was abrogated by the NMDA receptor antagonist memantine. Using PCR arrays, we found that QA significantly induces 10 genes in human neurons all known to be associated with AD pathology. Of these 10 genes, 6 belong to pathways involved in tau phosphorylation and 4 of them in neuroprotection. Altogether these results indicate a likely role of QA in the AD pathology through promotion of tau phosphorylation. Understanding the mechanism of the neurotoxic effects of QA is essential in developing novel therapeutic strategies for AD.
Journal Article
Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis
by
Hossain, Md Jakir
,
Brew, Bruce J
,
Sen, Monokesh K
in
Biomarkers
,
Central nervous system
,
Cerebrospinal fluid
2023
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Journal Article
Improvement of immune dysregulation in individuals with long COVID at 24-months following SARS-CoV-2 infection
2024
This study investigates the humoral and cellular immune responses and health-related quality of life measures in individuals with mild to moderate long COVID (LC) compared to age and gender matched recovered COVID-19 controls (MC) over 24 months. LC participants show elevated nucleocapsid IgG levels at 3 months, and higher neutralizing capacity up to 8 months post-infection. Increased spike-specific and nucleocapsid-specific CD4
+
T cells, PD-1, and TIM-3 expression on CD4
+
and CD8
+
T cells were observed at 3 and 8 months, but these differences do not persist at 24 months. Some LC participants had detectable IFN-γ and IFN-β, that was attributed to reinfection and antigen re-exposure. Single-cell RNA sequencing at the 24 month timepoint shows similar immune cell proportions and reconstitution of naïve T and B cell subsets in LC and MC. No significant differences in exhaustion scores or antigen-specific T cell clones are observed. These findings suggest resolution of immune activation in LC and return to comparable immune responses between LC and MC over time. Improvement in self-reported health-related quality of life at 24 months was also evident in the majority of LC (62%). PTX3, CRP levels and platelet count are associated with improvements in health-related quality of life.
Post-acute sequelae of COVID (PASC) or long-COVID can affect a proportion of those infected but this is not well understood. Here the authors perform a single cell transcriptomics analysis of immune cells from long-COVID patients at 24 months and find that cell changes observed at 3 and 8 months do not persist to 24 months.
Journal Article
Interferon-γ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO)
2011
The kynurenine pathway (KP) of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs) express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO) and IDO2, that it is highly regulated by type I (IFN-β) and II interferons (IFN-γ), and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation.
Journal Article
Reversible large-scale network disruption correlates with neurocognitive improvement in HIV-associated minor neurocognitive disorder with combined anti-retroviral therapy intensification: a prospective longitudinal resting-state functional magnetic resonance imaging study
by
Gates, Thomas M
,
Brew, Bruce J
,
Chaganti, Joga
in
Antiretroviral drugs
,
Antiretroviral therapy
,
Attention
2023
ObjectiveHIV-associated neurocognitive disorder (HAND) affects multiple cognitive domains and currently, the neuropsychological testing is the gold standard to identify these deficits. The aim of this longitudinal 12-month pilot study is to determine the effect of intensified combination antiretroviral therapy (cART) on rs-fMRI in virally suppressed (both in CSF and blood) patients with active HAND (those who have progressive neurocognitive impairment) and correlated with neurocognitive function tests.MethodsIn this pilot study, we have evaluated sixteen patients with active HAND with viral suppression in both blood and CSF to study the effect of cART on functional connectivity. Participants underwent rs-fMRI at the baseline (time point-1 (TP-1) and 12-month visits (time point-2 (TP-2)). Connectivity in the five major networks was measured at TP-1 and TP-2 using the seed-based approach. All the participants underwent a five-domain neuropsychological battery at TP-1 and TP-2. Neurocognitive scores (NC) as well as blood and CSF markers were correlated with functional connectivity (FC).ResultsThere was a significant increase in the FC between the two time points within the executive, salience, default mode, dorsal attention, and visual networks at voxel level threshold of p < 0.001 and cluster level threshold of p < 0.05 and corrected for false detection rate (FDR). The neurocognitive scores were positively correlated with all the networks at similar cluster and voxel level thresholds.ConclusionsThese results indicate that rs-fMRI can be potentially used as one of the biomarkers for treatment efficacy in HAND.
Journal Article
HIV transcription persists in the brain of virally suppressed people with HIV
by
Byrnes, Sarah J.
,
Tan, Abigail
,
Estes, Jacob D.
in
Adult
,
Antiretroviral agents
,
Antiretroviral therapy
2024
HIV persistence in the brain is a barrier to cure, and potentially contributes to HIV-associated neurocognitive disorders. Whether HIV transcription persists in the brain despite viral suppression with antiretroviral therapy (ART) and is subject to the same blocks to transcription seen in other tissues and blood, is unclear. Here, we quantified the level of HIV transcripts in frontal cortex tissue from virally suppressed or non-virally suppressed people with HIV (PWH).
HIV transcriptional profiling of frontal cortex brain tissue (and PBMCs where available) from virally suppressed (n = 11) and non-virally suppressed PWH (n = 13) was performed using digital polymerase chain reaction assays (dPCR). CD68+ myeloid cells or CD3+ T cells expressing HIV p24 protein present in frontal cortex tissue was detected using multiplex immunofluorescence imaging.
Frontal cortex brain tissue from PWH had HIV TAR (n = 23/24) and Long-LTR (n = 20/24) transcripts. Completion of HIV transcription was evident in brain tissue from 12/13 non-virally suppressed PWH and from 5/11 virally suppressed PWH, with HIV p24+CD68+ cells detected in these individuals. While a block to proximal elongation was present in frontal cortex tissue from both PWH groups, this block was more extensive in virally suppressed PWH.
These findings suggest that the brain is a transcriptionally active HIV reservoir in a subset of virally suppressed PWH.
Journal Article