Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
137
result(s) for
"Brey, Paul"
Sort by:
Bat coronaviruses related to SARS-CoV-2 and infectious for human cells
2022
The animal reservoir of SARS-CoV-2 is unknown despite reports of SARS-CoV-2-related viruses in Asian
Rhinolophus
bats
1
–
4
, including the closest virus from
R
.
affinis
, RaTG13 (refs.
5
,
6
), and pangolins
7
–
9
. SARS-CoV-2 has a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range
10
–
12
. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 (hACE2) pathway have not yet been identified, although they would be key in understanding the origin of the epidemic. Here we show that such viruses circulate in cave bats living in the limestone karstic terrain in northern Laos, in the Indochinese peninsula. We found that the receptor-binding domains of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than that of the SARS-CoV-2 strain isolated in Wuhan from early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies that neutralize SARS-CoV-2. None of these bat viruses contains a furin cleavage site in the spike protein. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses that are potentially infectious for humans circulate in
Rhinolophus
spp. in the Indochinese peninsula.
A study reports the detection and characterization of SARS-CoV-2-like viruses in Laotian cave-dwelling bats that are also demonstrated to infect human cells through the ACE2 pathway.
Journal Article
The Human-Baited Double Net Trap: An Alternative to Human Landing Catches for Collecting Outdoor Biting Mosquitoes in Lao PDR
2015
Estimating the exposure of individuals to mosquito-borne diseases is a key measure used to evaluate the success of vector control operations. The gold standard is to use human landing catches where mosquitoes are collected off the exposed limbs of human collectors. This is however an unsatisfactory method since it potentially exposes individuals to a range of mosquito-borne diseases. In this study several sampling methods were compared to find a method that is representative of the human-biting rate outdoors, but which does not expose collectors to mosquito-borne infections. The sampling efficiency of four odour-baited traps were compared outdoors in rural Lao PDR; the human-baited double net (HDN) trap, CDC light trap, BG sentinel trap and Suna trap. Subsequently the HDN, the best performing trap, was compared directly with human landing catches (HLC), the 'gold standard', for estimating human-biting rates. HDNs collected 11-44 times more mosquitoes than the other traps, with the exception of the HLC. The HDN collected similar numbers of Anopheles (Rate Ratio, RR = 1.16, 95% Confidence Intervals, 95% CI = 0.61-2.20) and Culex mosquitoes (RR = 1.26, 95% CI = 0.74-2.17) as HLC, but under-estimated the numbers of Aedes albopictus (RR = 0.45, 95% CI = 0.27-0.77). Simpson's index of diversity was 0.845 (95% CI 0.836-0.854) for the HDN trap and 0.778 (95% CI 0.769-0.787) for HLC, indicating that the HDN collected a greater diversity of mosquito species than HLC. Both HLC and HDN can distinguish between low and high biting rates and are crude ways to measure human-biting rate. The HDN is a simple and cheap method to estimate the human-biting rate outdoors without exposing collectors to mosquito bites.
Journal Article
Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control
by
Marcombe, Sébastien
,
Cattel, Julien
,
Fustec, Bénédicte
in
Aedes - drug effects
,
Aedes - genetics
,
Animals
2019
The yellow fever mosquito Aedes aegypti is the major vector of dengue, yellow fever, Zika, and Chikungunya viruses. Worldwide vector control is largely based on insecticide treatments but, unfortunately, vector control programs are facing operational challenges due to mosquitoes becoming resistant to commonly used insecticides. In Southeast Asia, resistance of Ae. aegypti to chemical insecticides has been documented in several countries but no data regarding insecticide resistance has been reported in Laos. To fill this gap, we assessed the insecticide resistance of 11 Ae. aegypti populations to larvicides and adulticides used in public health operations in the country. We also investigated the underlying molecular mechanisms associated with resistance, including target site mutations and detoxification enzymes putatively involved in metabolic resistance.
Bioassays on adults and larvae collected in five provinces revealed various levels of resistance to organophosphates (malathion and temephos), organochlorine (DDT) and pyrethroids (permethrin and deltamethrin). Synergist bioassays showed a significant increased susceptibility of mosquitoes to insecticides after exposure to detoxification enzyme inhibitors. Biochemical assays confirmed these results by showing significant elevated activities of cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and carboxylesterases (CCE) in adults. Two kdr mutations, V1016G and F1534C, were detected by qPCR at low and high frequency, respectively, in all populations tested. A significant negative association between the two kdr mutations was detected. No significant association between kdr mutations frequency (for both 1534C and 1016G) and survival rate to DDT or permethrin (P > 0.05) was detected. Gene Copy Number Variations (CNV) were detected for particular detoxification enzymes. At the population level, the presence of CNV affecting the carboxylesterase CCEAE3A and the two cytochrome P450 CYP6BB2 and CYP6P12 were significantly correlated to insecticide resistance.
These results suggest that both kdr mutations and metabolic resistance mechanisms are present in Laos but their impact on phenotypic resistance may differ in proportion at the population or individual level. Molecular analyses suggest that CNV affecting CCEAE3A previously associated with temephos resistance is also associated with malathion resistance while CNV affecting CYP6BB2 and CYP6P12 are associated with pyrethroid and possibly DDT resistance. The presence of high levels of insecticide resistance in the main arbovirus vector in Laos is worrying and may have important implications for dengue vector control in the country.
Journal Article
Alternative insecticides for larval control of the dengue vector Aedes aegypti in Lao PDR: insecticide resistance and semi-field trial study
2018
Background
The mosquito
Aedes aegypti
is the primary vector of several arboviruses, such as dengue, chikungunya and Zika, and represents a major public health problem in Southeast Asia. In Laos, where dengue is reemerging, several
Ae. aegypti
populations from the capital Vientiane have shown resistance to the organophosphate temephos, a commonly-used larvicide for public health interventions.
Methods
Here, we tested the insecticide susceptibility of a wild larval population of
Ae. aegypti
against
Bacillus thuringiensis israelensis
(
Bti
), diflubenzuron, pyriproxyfen and spinosad. Residual efficacies of
Bti
(VectobacWG®), diflubenzuron (Killmos®) and temephos (Abate®) were then evaluated under simulated field conditions against the wild
Ae. aegypti
population.
Results
The larval bioassays showed that the wild
Ae. aegypti
strain was moderately resistant to temephos and spinosad (resistance ratio, RR < 5) and fully susceptible to the other insecticides (RR = 1). The simulated field trial bioassays showed that all of the insecticides tested remained above the WHO acceptable larvicide threshold after 28 weeks.
Conclusions
These results suggest that
Bti
and diflubenzuron may be promising alternative larvicides for controlling dengue vectors in water-storage containers in Laos, especially against
Ae. aegypti
populations, in which resistance to temephos has been detected.
Journal Article
Multiple chikungunya virus introductions in Lao PDR from 2014 to 2020
by
Keosenhom, Sitsana
,
Somlor, Somphavanh
,
Bounmany, Phaithong
in
Amino acids
,
Analysis
,
Biodiversity
2022
The first documented chikungunya virus (CHIKV) outbreak in Lao People’s Democratic Republic (Lao PDR) occurred in 2012–2013. Since then, several imported and a few autochthonous cases were identified by the national arbovirus surveillance network. The present study aimed to summarize the main genetic features of the CHIKV strains detected in Lao PDR between 2014 and 2020. Samples from Lao patients presenting symptoms compatible with a CHIKV infection were centralized in Vientiane Capital city for real-time RT-PCR screening. Molecular epidemiology was performed by sequencing the E2-6K-E1 region. From 2014 to 2020, two Asian lineage isolates ( e . g . French Polynesia; Indonesia), one ECSA-IOL lineage isolate ( e . g . Thailand) and one unclassified ( e . g . Myanmar) were imported in Vientiane Capital city. Sequences from the autochthonous cases recorded in the Central and Southern parts of the country between July and September 2020 belonged to the ECSA-IOL lineage and clustered with CHIKV strains recently detected in neighboring countries. These results demonstrate the multiple CHIKV introductions in Lao PDR since 2014 and provide evidence for sporadic and time-limited circulation of CHIKV in the country. Even if the circulation of CHIKV seems to be geographically and temporally limited in Lao PDR, the development of international tourism and trade may cause future outbreaks of CHIKV in the country and at the regional level.
Journal Article
MALDI-TOF MS: An effective tool for a global surveillance of dengue vector species
2022
Dengue, Zika and chikungunya viruses cause significant human public health burdens in the world. These arboviruses are transmitted by vector mosquito species notably Aedes aegypti and Aedes albopictus . In the Pacific region, more vector species of arboviruses belonging to the Scutellaris Group are present. Due to the expansion of human travel and international trade, the threat of their dispersal in other world regions is on the rise. Strengthening of entomological surveillance ensuring rapid detection of introduced vector species is therefore required in order to avoid their establishment and the risk of arbovirus outbreaks. This surveillance relies on accurate species identification. The aim of this study was to assess the use of the Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) as a tool for an international identification and surveillance of these mosquito vectors of arboviruses. Field-mosquitoes belonging to 8 species ( Ae . aegypti , Ae . albopictus , Aedes polynesiensis , Aedes scutellaris , Aedes pseudoscutellaris , Aedes malayensis , Aedes futunae and Culex quinquefasciatus ) from 6 countries in the Pacific, Asian and Madagascar, were included in this study. Analysis provided evidence that a MALDI-TOF database created using mosquitoes from the Pacific region allowed suitable identification of mosquito species from the other regions. This technic was as efficient as the DNA sequencing method in identifying mosquito species. Indeed, with the exception of two Ae . pseudoscutellaris , an exact species identification was obtained for all individual mosquitoes. These findings highlight that the MALDI-TOF MS is a promising tool that could be used for a global comprehensive arbovirus vector surveillance.
Journal Article
First case of human infection with Plasmodium knowlesi in Laos
by
Lorphachan, Lavy
,
Soundala, Pheovaly
,
Keomalaphet, Sengdeuane
in
Biology and Life Sciences
,
Care and treatment
,
Cartridges
2018
[...]the PCR amplicons were purified with Performa DTR Gel Filtration Cartridges (Edge Bio, United States of America) and sequenced by an ABI Genetic Analyzer model 3130XL (Life Technologies, Japan). Furthermore, a recent study reported that 63% (28/44) of long-tailed macaques in Laos were infected with P. cynomolgi, which can also be infectious to humans [8,10]. [...]an investigation of human infection with P. cynomolgi is also needed in Laos. [...]previous studies demonstrated that false-positive results for P. vivax and P. falciparum have been observed for P. knowlesi mono-infection with certain RDTs [11,12]. First case of a naturally acquired human infection with Plasmodium cynomolgi.
Journal Article
Insecticide resistance status of malaria vectors in Lao PDR
by
Phommavan, Nothasin
,
Marcombe, Sébastien
,
Somphong, Boutsady
in
Agrochemicals
,
Animal biology
,
Animals
2017
Knowledge on insecticide resistance in Anopheles species is a basic requirement to guide malaria vector control programs. In Lao PDR, vector control relies on insecticide residual spraying (IRS) and impregnated bed-nets (ITNs) with the use of pyrethroids. Here, the susceptibility of Anopheles species, including several malaria vectors (An. maculatus and An. minimus), to various insecticides was investigated in ten provinces of Lao PDR through a north-south transect. Bioassays were performed on field caught female mosquitoes using the standard WHO susceptibility tests with DDT (4%), deltamethrin (0.05%) and permethrin (0.75%). In addition, the DIIS6 region of the para-type sodium channel gene was amplified and sequenced to identify knockdown resistance mutations (kdr). Resistance to DDT and permethrin was detected in suspected malaria vectors, such as An. nivipes and An. philippinensis in Lao PDR. Resistance to the formerly used DDT was found in a population of An. maculatus s.l. from Luang Prabang province. No resistance to pyrethroids was found in primary vectors, indicating that these insecticides are still adequate for malaria vector control. However, high resistance levels to pyrethroids was found in-vector species and reduced susceptibility to permethrin in An. minimus and An. maculatus was reported in specific localities which raises concerns for pyrethroid-based control in the future. No kdr mutation was found in any of the resistant populations tested hence suggesting a probable role detoxification enzymes in resistance. This study highlights the necessity to continue the monitoring of insecticide susceptibility to early detect potential occurrence and/or migration of insecticide resistance in malaria vectors in Lao PDR.
Journal Article
The detection of cryptic Plasmodium infection among villagers in Attapeu province, Lao PDR
by
Lorphachan, Lavy
,
Soundala, Pheovaly
,
Keomalaphet, Sengdeuane
in
Biology and Life Sciences
,
Carriers
,
Dehydrogenases
2017
Although the malaria burden in the Lao PDR has gradually decreased, the elimination of malaria by 2030 presents many challenges. Microscopy and malaria rapid diagnostic tests (RDTs) are used to diagnose malaria in the Lao PDR; however, some studies have reported the prevalence of sub-microscopic Plasmodium infections or asymptomatic Plasmodium carriers in endemic areas. Thus, highly sensitive detection methods are needed to understand the precise malaria situation in these areas.
A cross-sectional malaria field survey was conducted in 3 highly endemic malaria districts (Xaysetha, Sanamxay, Phouvong) in Attapeu province, Lao PDR in 2015, to investigate the precise malaria endemicity in the area; 719 volunteers from these villages participated in the survey. Microscopy, RDTs and a real-time nested PCR were used to detect Plasmodium infections and their results were compared. A questionnaire survey of all participants was also conducted to estimate risk factors of Plasmodium infection. Numbers of infections detected by the three methods were microscopy: P. falciparum (n = 1), P. vivax (n = 2); RDTs: P. falciparum (n = 2), P. vivax (n = 3); PCR: Plasmodium (n = 47; P. falciparum [n = 4], P. vivax [n = 41], mixed infection [n = 2]; 6.5%, 47/719). Using PCR as a reference, the sensitivity and specificity of microscopy were 33.3% and 100.0%, respectively, for detecting P. falciparum infection, and 7.0% and 100.0%, for detecting P. vivax infection. Among the 47 participants with parasitemia, only one had a fever (≥37.5°C) and 31 (66.0%) were adult males. Risk factors of Plasmodium infection were males and soldiers, whereas a risk factor of asymptomatic Plasmodium infection was a history of ≥3 malaria episodes.
There were many asymptomatic Plasmodium carriers in the study areas of Attapeu province in 2015. Adult males, probably soldiers, were at high risk for malaria infection. P. vivax, the dominant species, accounted for 87.2% of the Plasmodium infections among the participants. To achieve malaria elimination in the Lao PDR, highly sensitive diagnostic tests, including PCR-based diagnostic methods should be used, and plans targeting high-risk populations and elimination of P. vivax should be designed and implemented.
Journal Article
Risk of exposure to potential vector mosquitoes for rural workers in Northern Lao PDR
2017
One major consequence of economic development in South-East Asia has been a rapid expansion of rubber plantations, in which outbreaks of dengue and malaria have occurred. Here we explored the difference in risk of exposure to potential dengue, Japanese encephalitis (JE), and malaria vectors between rubber workers and those engaged in traditional forest activities in northern Laos PDR.
Adult mosquitoes were collected for nine months in secondary forests, mature and immature rubber plantations, and villages. Human behavior data were collected using rapid participatory rural appraisals and surveys. Exposure risk was assessed by combining vector and human behavior and calculating the basic reproduction number (R0) in different typologies. Compared to those that stayed in the village, the risk of dengue vector exposure was higher for those that visited the secondary forests during the day (odds ratio (OR) 36.0), for those living and working in rubber plantations (OR 16.2) and for those that tapped rubber (OR 3.2). Exposure to JE vectors was also higher in the forest (OR 1.4) and, similar when working (OR 1.0) and living in the plantations (OR 0.8). Exposure to malaria vectors was greater in the forest (OR 1.3), similar when working in the plantations (OR 0.9) and lower when living in the plantations (OR 0.6). R0 for dengue was >2.8 for all habitats surveyed, except villages where R0≤0.06. The main malaria vector in all habitats was Anopheles maculatus s.l. in the rainy season and An. minimus s.l. in the dry season.
The highest risk of exposure to vector mosquitoes occurred when people visit natural forests. However, since rubber workers spend long periods in the rubber plantations, their risk of exposure is increased greatly compared to those who temporarily enter natural forests or remain in the village. This study highlights the necessity of broadening mosquito control to include rubber plantations.
Journal Article