Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
5 result(s) for "Brockie, Keith"
Sort by:
migration ecology of birds
This book presents an up-to-date, detailed and thorough review of the most fascinating ecological findings of bird migration. It deals with all aspects of this absorbing subject, including the problems of navigation and vagrancy, the timing and physiological control of migration, the factors that limit their populations, and more. Author, Ian Newton, reveals the extraordinary adaptability of birds to the variable and changing conditions across the globe, including current climate change. This adventurous book places emphasis on ecological aspects, which have received only scant attention in previous publications. Overall, the book provides the most thorough and in-depth appraisal of current information available, with abundant tables, maps and diagrams, and many new insights. Written in a clear and readable style, this book appeals not only to migration researchers in the field and Ornithologists, but to anyone with an interest in this fascinating subject. * Hot ecological aspects include: various types of bird movements, including dispersal and nomadism, and how they relate to food supplies and other external conditions * Contains numerous tables, maps and diagrams, a glossary, and a bibliography of more than 2,700 references* Written by an active researcher with a distinguished career in avian ecology, including migration research
The Puffin
With its colourful beak and fast, whirring flight, the Atlantic Puffin is the most recognisable and popular of all North Atlantic seabirds. Puffins spend most of the year at sea, but for a few months of the year the come to shore, nesting in burrows on steep cliffs or on inaccessible islands. Awe-inspiring numbers of these birds can sometimes be seen bobbing on the sea or flying in vast wheels over the colony, bringing fish in their beaks back to the chicks. However, the species has declined sharply over the last decade; this is due to a collapse in fish stocks caused by overfishing and global warming, combined with an exponential increase in Pipefish (which can kill the chicks). The Puffin is a revised and expanded second edition of Poyser's 1984 title on these endearing birds, widely considered to be a Poyser classic. It includes sections on their affinities, nesting and incubation, movements, foraging ecology, survivorship, predation, and research methodology; particular attention is paid to conservation, with the species considered an important 'indicator' of the health of our coasts.
The Sampling and Caching Subsystem (SCS) for the Scientific Exploration of Jezero Crater by the Mars 2020 Perseverance Rover
The Mars 2020 mission seeks to conduct a new scientific exploration on the surface of Mars. The Perseverance Rover will be sent to the surface of the Jezero Crater region to study its habitability, search for biosignatures of past life, acquire and cache samples for potential return, and prepare for possible human missions. To enable these objectives, an innovative Sampling and Caching Subsystem (SCS) has been developed and tested to allow the Perseverance Rover to acquire and cache rock core and regolith samples, prepare abraded rock surfaces, and support proximity science instruments. The SCS consists of the Robotic Arm (RA), the Turret and Corer, and the Adaptive Caching Assembly (ACA). These elements reside and interact both inside and outside of the Perseverance Rover to enable surface interactions, sample transfer, and caching. The main body of the Turret consists of the Coring Drill (Corer) with a Launch Abrading Bit initially installed prior to launch. Mounted to the Turret main structure are two proximity science instruments, SHERLOC and PIXL, as well as the Gas Dust Removal Tool (gDRT) and the Facility Contact Sensor (FCS). These work together with the RA to provide the sample acquisition, abraded surface preparation, and proximity science functions. The ACA is a network of assemblies largely inside the front belly of the Rover, which combine to perform the sample handling and caching functions of the mission. The ACA primarily consists of the Bit Carousel, the Sample Handling Assembly (SHA), End Effector (EE), Sample Tubes and their Sample Tube Storage Assembly (STSA), Seals and their Dispenser, Volume, and Tube Assembly (DVT), the Sealing Station, the Vision Station, the Cover Parking Lot, and additional supporting hardware. These components attach to the Caching Component Mounting Deck (CCMD) that is integrated with the Rover interior. This work describes these major elements of the SCS, with an emphasis on the functionality required to perform the set of tasks and interactions required by the subsystem. Key considerations of contamination control and biological cleanliness throughout the development of these hardware elements are also discussed. Additionally, aspects of testing and validating the functionality of the SCS are described. Early prototypes and tests matured the designs over several years and eventually led to the flight hardware and integrated testing in both Earth ambient and Mars-like environments. Multiple unique testbed venues were developed and used to enable testing from low-level mechanism operation through end-to-end sampling and caching interactions with the full subsystem and flight software. Various accomplishments from these testing efforts are highlighted. These past and ongoing tests support the successful preparations of the SCS on its pathway to operations on Mars.