Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
119 result(s) for "Brockmann, Dirk"
Sort by:
The Hidden Geometry of Complex, Network-Driven Contagion Phenomena
The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.
COVID-19 lockdown induces disease-mitigating structural changes in mobility networks
In the wake of the COVID-19 pandemic many countries implemented containment measures to reduce disease transmission. Studies using digital data sources show that the mobility of individuals was effectively reduced in multiple countries. However, it remains unclear whether these reductions caused deeper structural changes in mobility networks and how such changes may affect dynamic processes on the network. Here we use movement data of mobile phone users to show that mobility in Germany has not only been reduced considerably: Lockdown measures caused substantial and long-lasting structural changes in the mobility network. We find that long-distance travel was reduced disproportionately strongly. The trimming of long-range network connectivity leads to a more local, clustered network and a moderation of the “small-world” effect. We demonstrate that these structural changes have a considerable effect on epidemic spreading processes by “flattening” the epidemic curve and delaying the spread to geographically distant regions.
Fundamental properties of cooperative contagion processes
We investigate the effects of cooperativity between contagion processes that spread and persist in a host population. We propose and analyze a dynamical model in which individuals that are affected by one transmissible agent A exhibit a higher than baseline propensity of being affected by a second agent B and vice versa. The model is a natural extension of the traditional susceptible-infected-susceptible model used for modeling single contagion processes. We show that cooperativity changes the dynamics of the system considerably when cooperativity is strong. The system exhibits discontinuous phase transitions not observed in single agent contagion, multi-stability, a separation of the traditional epidemic threshold into different thresholds for inception and extinction as well as hysteresis. These properties are robust and are corroborated by stochastic simulations on lattices and generic network topologies. Finally, we investigate wave propagation and transients in a spatially extended version of the model and show that especially for intermediate values of baseline reproduction ratios the system is characterized by various types of wave-front speeds. The system can exhibit spatially heterogeneous stationary states for some parameters and negative front speeds (receding wave fronts). The two agent model can be employed as a starting point for more complex contagion processes, involving several interacting agents, a model framework particularly suitable for modeling the spread and dynamics of microbiological ecosystems in host populations.
Robust classification of salient links in complex networks
Complex networks in natural, social and technological systems generically exhibit an abundance of rich information. Extracting meaningful structural features from data is one of the most challenging tasks in network theory. Many methods and concepts have been proposed to address this problem such as centrality statistics, motifs, community clusters and backbones, but such schemes typically rely on external and arbitrary parameters. It is unknown whether generic networks permit the classification of elements without external intervention. Here we show that link salience is a robust approach to classifying network elements based on a consensus estimate of all nodes. A wide range of empirical networks exhibit a natural, network-implicit classification of links into qualitatively distinct groups, and the salient skeletons have generic statistical properties. Salience also predicts essential features of contagion phenomena on networks, and points towards a better understanding of universal features in empirical networks that are masked by their complexity. Methods to study the structure of complex networks often rely on case-sensitive parameters that have limited applications. In this study, a new method—link salience—is used to classify network elements based on a consensus estimate of all nodes, finding generic topological features in many empirical networks.
Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases
We investigate a model for spatial epidemics explicitly taking into account bidirectional movements between base and destination locations on individual mobility networks. We provide a systematic analysis of generic dynamical features of the model on regular and complex metapopulation network topologies and show that significant dynamical differences exist to ordinary reaction-diffusion and effective force of infection models. On a lattice we calculate an expression for the velocity of the propagating epidemic front and find that, in contrast to the diffusive systems, our model predicts a saturation of the velocity with an increasing traveling rate. Furthermore, we show that a fully stochastic system exhibits a novel threshold for the attack ratio of an outbreak that is absent in diffusion and force of infection models. These insights not only capture natural features of human mobility relevant for the geographical epidemic spread, they may serve as a starting point for modeling important dynamical processes in human and animal epidemiology, population ecology, biology, and evolution.
Finding disease outbreak locations from human mobility data
Finding the origin location of an infectious disease outbreak quickly is crucial in mitigating its further dissemination. Current methods to identify outbreak locations early on rely on interviewing affected individuals and correlating their movements, which is a manual, time-consuming, and error-prone process. Other methods such as contact tracing, genomic sequencing or theoretical models of epidemic spread offer help, but they are not applicable at the onset of an outbreak as they require highly processed information or established transmission chains. Digital data sources such as mobile phones offer new ways to find outbreak sources in an automated way. Here, we propose a novel method to determine outbreak origins from geolocated movement data of individuals affected by the outbreak. Our algorithm scans movement trajectories for shared locations and identifies the outbreak origin as the most dominant among them. We test the method using various empirical and synthetic datasets, and demonstrate that it is able to single out the true outbreak location with high accuracy, requiring only data of N = 4 individuals. The method can be applied to scenarios with multiple outbreak locations, and is even able to estimate the number of outbreak sources if unknown, while being robust to noise. Our method is the first to offer a reliable, accurate out-of-the-box approach to identify outbreak locations in the initial phase of an outbreak. It can be easily and quickly applied in a crisis situation, improving on previous manual approaches. The method is not only applicable in the context of disease outbreaks, but can be used to find shared locations in movement data in other contexts as well.
Temporal dynamics of online petitions
Online petitions are an important avenue for direct political action, yet the dynamics that determine when a petition will be successful are not well understood. Here we analyze the temporal characteristics of online-petition signing behavior in order to identify systematic differences between popular petitions, which receive a high volume of signatures, and unpopular ones. We find that, in line with other temporal characterizations of human activity, the signing process is typically non-Poissonian and non-homogeneous in time. However, this process exhibits anomalously high memory for human activity, possibly indicating that synchronized external influence or contagion play and important role. More interestingly, we find clear differences in the characteristics of the inter-event time distributions depending on the total number of signatures that petitions receive, independently of the total duration of the petitions. Specifically, popular petitions that attract a large volume of signatures exhibit more variance in the distribution of inter-event times than unpopular petitions with only a few signatures, which could be considered an indication that the former are more bursty. However, petitions with large signature volume are less bursty according to measures that consider the time ordering of inter-event times. Our results, therefore, emphasize the importance of accounting for time ordering to characterize human activity.
A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks
Urban travel demand, consisting of thousands or millions of origin–destination trips, can be viewed as a large-scale weighted directed graph. The paper applies a complex network-motivated approach to understand and characterize urban travel demand patterns through analysis of statistical properties of origin–destination demand networks. We compare selected network characteristics of travel demand patterns in two cities, presenting a comparative network-theoretic analysis of Chicago and Melbourne. The proposed approach develops an interdisciplinary and quantitative framework to understand mobility characteristics in urban areas. The paper explores statistical properties of the complex weighted network of urban trips of the selected cities. We show that travel demand networks exhibit similar properties despite their differences in topography and urban structure. Results provide a quantitative characterization of the network structure of origin–destination demand in cities, suggesting that the underlying dynamical processes in travel demand networks are similar and evolved by the distribution of activities and interaction between places in cities.
Citizen data sovereignty is key to wearables and wellness data reuse for the common good
Smartphones, smartwatches, linked wearables, and associated wellness apps have had rapid uptake. These tools become ever ‘smarter’ in sensing intimate aspects of our surroundings and physiology over time, including activity, metabolites, electrical signals, blood pressure and oxygenation. Proposed EU law stipulates the ‘involuntary donation’ of depersonalized health and wellness data. There has been pushback against the ever-increasing gathering and sharing of wellness data in this context, increasing with every app purchased or updated. Is the potential of this data now lost to research? Consent-led COVID-19 data donation projects signpost a participative, standardized, and scalable approach to data sharing.
Social networks predict the life and death of honey bees
In complex societies, individuals’ roles are reflected by interactions with other conspecifics. Honey bees ( Apis mellifera ) generally change tasks as they age, but developmental trajectories of individuals can vary drastically due to physiological and environmental factors. We introduce a succinct descriptor of an individual’s social network that can be obtained without interfering with the colony. This ‘network age’ accurately predicts task allocation, survival, activity patterns, and future behavior. We analyze developmental trajectories of multiple cohorts of individuals in a natural setting and identify distinct developmental pathways and critical life changes. Our findings suggest a high stability in task allocation on an individual level. We show that our method is versatile and can extract different properties from social networks, opening up a broad range of future studies. Our approach highlights the relationship of social interactions and individual traits, and provides a scalable technique for understanding how complex social systems function. Honey bee workers take on different tasks for the colony as they age. Here, the authors develop a method to extract a descriptor of the individuals’ social networks and show that interaction patterns predict task allocation and distinguish different developmental trajectories.