Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Bromm, Alexander"
Sort by:
Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes
2015
In this work, a sensor to evaluate sterilization processes with hydrogen peroxide vapor has been characterized. Experimental, analytical and numerical methods were applied to evaluate and study the sensor behavior. The sensor set-up is based on planar interdigitated electrodes. The interdigitated electrode structure consists of 614 electrode fingers spanning over a total sensing area of 20 mm2. Sensor measurements were conducted with and without microbiological spores as well as after an industrial sterilization protocol. The measurements were verified using an analytical expression based on a first-order elliptical integral. A model based on the finite element method with periodic boundary conditions in two dimensions was developed and utilized to validate the experimental findings.
Journal Article
Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia
by
Lesur, Joséphine
,
Nauss, Thomas
,
Ossendorf, Götz
in
Acclimatization - genetics
,
Adaptation
,
Alpine environments
2019
Studies of early human settlement in alpine environments provide insights into human physiological, genetic, and cultural adaptation potentials. Although Late and even Middle Pleistocene human presence has been recently documented on the Tibetan Plateau, little is known regarding the nature and context of early persistent human settlement in high elevations. Here, we report the earliest evidence of a prehistoric high-altitude residential site. Located in Africa’s largest alpine ecosystem, the repeated occupation of Fincha Habera rock shelter is dated to 47 to 31 thousand years ago. The available resources in cold and glaciated environments included the exploitation of an endemic rodent as a key food source, and this played a pivotal role in facilitating the occupation of this site by Late Pleistocene hunter-gatherers.
Journal Article
Impact of the First Stars to the First Galaxy Formation
by
Bromm, Volker
,
Jeon, Myoungwon
,
Heger, Alexander
in
Astronomy
,
Astrophysics
,
Contributed Papers
2012
We present the results from our cosmological simulations of the first stages of galaxy formation. We use Gadget-2 (Springel 2005), modified to include detailed cooling, chemistry, and radiative transfer of primordial gas to study the impact of the first stars on galaxy formation. In contrast to previous work, we apply a realistic treatment of stellar feedback by using updated stellar models for the first stars. In this proceeding, we briefly summarize how stellar feedback from the first stars affects the primordial IGM inside the first galaxies.
Journal Article
Public Release of A-SLOTH: Ancient Stars and Local Observables by Tracing Halos
2022
The semi-analytical model A-SLOTH (Ancient Stars and Local Observables by Tracing Halos) is the first public code that connects the formation of the first stars and galaxies to observables. After several successful projects with this model, we publish the source code and describe the public version in this paper. The model is based on dark matter merger trees that can either be generated based on Extended Press-Schechter theory or that can be imported from dark matter simulations. On top of these merger trees, A-SLOTH applies analytical recipes for baryonic physics to model the formation of both metal-free and metal-poor stars and the transition between them with unprecedented precision and fidelity. A-SLOTH samples individual stars and includes radiative, chemical, and mechanical feedback. It is calibrated based on six observables, such as the optical depth to Thomson scattering, the stellar mass of the Milky Way and its satellite galaxies, the number of extremely-metal poor stars, and the cosmic star formation rate density at high redshift. A-SLOTH has versatile applications with moderate computational requirements. It can be used to constrain the properties of the first stars and high-z galaxies based on local observables, predicts properties of the oldest and most metal-poor stars in the Milky Way, can serve as a subgrid model for larger cosmological simulations, and predicts next-generation observables of the early Universe, such as supernova rates or gravitational wave events.
Preserving chemical signatures of primordial star formation in the first low-mass stars
2015
We model early star forming regions and their chemical enrichment by Population III (Pop III) supernovae with nucleosynthetic yields featuring high [C/Fe] ratios and pair-instability supernova (PISN) signatures. We aim to test how well these chemical abundance signatures are preserved in the gas prior to forming the first long-lived low-mass stars (or second-generation stars). Our results show that second-generation stars can retain the nucleosynthetic signature of their Pop III progenitors, even in the presence of nucleosynthetically normal Pop III core-collapse supernovae. We find that carbon-enhanced metal-poor stars are likely second-generation stars that form in minihaloes. Furthermore, it is likely that the majority of Pop III supernovae produce high [C/Fe] yields. In contrast, metals ejected by a PISN are not concentrated in the first star forming haloes, which may explain the absence of observed PISN signatures in metal-poor stars. We also find that unique Pop III abundance signatures in the gas are quickly wiped out by the emergence of Pop II supernovae. We caution that the observed fractions of stars with Pop III signatures cannot be directly interpreted as the fraction of Pop III stars producing that signature. Such interpretations require modelling the metal enrichment process prior to the second-generation stars' formation, including results from simulations of metal mixing. The full potential of stellar archaeology can likely be reached in ultra-faint dwarf galaxies, where the simple formation history may allow for straightforward identification of second-generation stars.
A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars
by
Wilkins, Stephen M
,
Leung, Gene C K
,
Cleri, Nikko J
in
Active galactic nuclei
,
Astronomical models
,
Constraint modelling
2023
We report the discovery of an accreting supermassive black hole at z=8.679, in CEERS_1019, a galaxy previously discovered via a Ly\\(\\alpha\\)-break by Hubble and with a Ly\\(\\alpha\\) redshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we observed this source with JWST/NIRSpec spectroscopy, MIRI and NIRCam imaging, and NIRCam/WFSS slitless spectroscopy. The NIRSpec spectra uncover many emission lines, and the strong [O III] emission line confirms the ground-based Ly\\(\\alpha\\) redshift. We detect a significant broad (FWHM~1200 km/s) component in the H\\(\\beta\\) emission line, which we conclude originates in the broad-line region of an active galactic nucleus (AGN), as the lack of a broad component in the forbidden lines rejects an outflow origin. This hypothesis is supported by the presence of high-ionization lines, as well as a spatial point-source component embedded within a smoother surface brightness profile. The mass of the black hole is log(\\(M_{BH}/M_{\\odot})=6.95{\\pm}0.37\\), and we estimate that it is accreting at 1.2 (\\(\\pm\\)0.5) x the Eddington limit. The 1-8 \\(\\mu\\)m photometric spectral energy distribution (SED) from NIRCam and MIRI shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M\\(_{\\odot}\\)~9.5) and highly star-forming (SFR~30 M\\(_{\\odot}\\) yr\\(^{-1}\\)). Ratios of the strong emission lines show that the gas in this galaxy is metal-poor (Z/Z\\(_{\\odot}\\)~0.1), dense (n\\(_{e}\\)~10\\(^{3}\\) cm\\(^{-3}\\)), and highly ionized (log U~-2.1), consistent with the general galaxy population observed with JWST at high redshifts. We use this presently highest-redshift AGN discovery to place constraints on black hole seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from massive black hole seeds is required to form this object by the observed epoch.
The Chemical Imprint of Silicate Dust on the Most Metal-Poor Stars
2014
We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (< 1Msun) in the early universe. Previous work has shown the existence of a critical dust-to-gas ratio, below which dust thermal cooling cannot cause gas fragmentation. Assuming the first dust is silicon-based, we compute critical dust-to-gas ratios and associated critical silicon abundances ([Si/H]crit). At the density and temperature associated with protostellar disks, we find that a standard Milky Way grain size distribution gives [Si/H]crit = -4.5 +/- 0.1, while smaller grain sizes created in a supernova reverse shock give [Si/H]crit = -5.3 +/- 0.1. Other environments are not dense enough to be influenced by dust cooling. We test the silicate dust cooling theory by comparing to silicon abundances observed in the most iron-poor stars ([Fe/H] < -4.0). Several stars have silicon abundances low enough to rule out dust-induced gas fragmentation with a standard grain size distribution. Moreover, two of these stars have such low silicon abundances that even dust with a shocked grain size distribution cannot explain their formation. Adding small amounts of carbon dust does not significantly change these conclusions. Additionally, we find that these stars exhibit either high carbon with low silicon abundances or the reverse. A silicate dust scenario thus suggests that the earliest low-mass star formation in the most metal-poor regime may have proceeded through two distinct cooling pathways: fine structure line cooling and dust cooling. This naturally explains both the carbon-rich and carbon-normal stars at extremely low [Fe/H].
On the Physical Requirements for a Pre-Reionization Origin of the Unresolved Near-Infrared Background
by
Bromm, Volker
,
Ricotti, Massimo
,
Kashlinsky, Alexander
in
Background radiation
,
Black holes
,
Clustering
2015
The study of the Cosmic Near-Infrared Background (CIB) light after subtraction of resolved sources can push the limits of current observations and infer the level of galaxy and black hole activity in the early universe. However, disentangling the relative contribution from low- and high-redshift sources is not trivial. Spatial fluctuations of the CIB exhibit a clustering excess at angular scales \\(\\sim 1^\\circ\\) whose origin has not been conclusively identified. We explore the likelihood that this signal is dominated by emission from galaxies and accreting black holes in the early Universe. We find that, if the first small mass galaxies have a normal IMF, the light of their ageing stars (fossils) integrated over cosmic time contributes a comparable amount to the CIB as their pre-reionization progenitors. However, the measured fluctuation signal is too large to be produced by galaxies at redshifts \\(z>8\\) unless their star formation efficiencies are much larger than those inferred from the observed Lyman-dropout population. In order to produce the observed level of CIB fluctuation without violating constraints from galaxy counts and the electron optical depth of the IGM, minihalos at \\(z>12\\) must form stars with efficiency \\(f_\\star \\gtrsim 0.1\\) and, although a top-heavy IMF is preferred, have a very low escape fraction of ionizing radiation, \\(f_{\\rm esc}<0.01\\). If instead the CIB fluctuations are produced by high-\\(z\\) black holes, one requires vigorous accretion in the early universe reaching \\(\\rho_{\\rm acc} \\gtrsim 10^5M_\\odot{\\rm Mpc^{-3}}\\) by \\(z\\simeq 10\\). This growth must stop by \\(z \\sim 6\\) and be significantly obscured not to overproduce the soft cosmic X-ray background (CXB) and its observed coherence with the CIB. We therefore find the range of suitable possibilities at high-\\(z\\) to be narrow, but could possibly be widened by including additional physics and evolution at those epochs.
A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ~ 12 Galaxy in Early JWST CEERS Imaging
by
Wilkins, Stephen M
,
Fernández, Vital
,
Cleri, Nikko J
in
Astronomical models
,
Big bang cosmology
,
Color
2022
We report the discovery of a candidate galaxy with a photo-z of z~12 in the first epoch of the JWST Cosmic Evolution Early Release Science (CEERS) Survey. Following conservative selection criteria we identify a source with a robust z_phot = 11.8^+0.3_-0.2 (1-sigma uncertainty) with m_F200W=27.3, and >7-sigma detections in five filters. The source is not detected at lambda < 1.4um in deep imaging from both HST and JWST, and has faint ~3-sigma detections in JWST F150W and HST F160W, which signal a Ly-alpha break near the red edge of both filters, implying z~12. This object (Maisie's Galaxy) exhibits F115W-F200W > 1.9 mag (2-sigma lower limit) with a blue continuum slope, resulting in 99.6% of the photo-z PDF favoring z > 11. All data quality images show no artifacts at the candidate's position, and independent analyses consistently find a strong preference for z > 11. Its colors are inconsistent with Galactic stars, and it is resolved (r_h = 340 +/- 14 pc). Maisie's Galaxy has log M*/Msol ~ 8.5 and is highly star-forming (log sSFR ~ -8.2 yr^-1), with a blue rest-UV color (beta ~ -2.5) indicating little dust though not extremely low metallicity. While the presence of this source is in tension with most predictions, it agrees with empirical extrapolations assuming UV luminosity functions which smoothly decline with increasing redshift. Should followup spectroscopy validate this redshift, our Universe was already aglow with galaxies less than 400 Myr after the Big Bang.
Low-energy Population III supernovae and the origin of extremely metal-poor stars
2017
Some ancient, dim, metal-poor stars may have formed in the ashes of the first supernovae (SNe). If their chemical abundances can be reconciled with the elemental yields of specific Population III (Pop III) explosions, they could reveal the properties of primordial stars. But multidimensional simulations of such explosions are required to predict their yields because dynamical instabilities can dredge material up from deep in the ejecta that would otherwise be predicted to fall back on to the central remnant and be lost in one-dimensional (1D) models. We have performed two-dimensional (2D) numerical simulations of two low-energy Pop III SNe, a 12.4 Msun explosion and a 60 Msun explosion, and find that they produce elemental yields that are a good fit to those measured in the most iron-poor star discovered to date, SMSS J031300.36-670839.3 (J031300). Fallback on to the compact remnant in these weak explosions accounts for the lack of measurable iron in J031300 and its low iron-group abundances in general. Our 2D explosions produce higher abundances of heavy elements (atomic number Z > 20) than their 1D counterparts due to dredge-up by fluid instabilities. Since almost no Ni is ejected by these weak SNe, their low luminosities will prevent their detection in the near-infrared with the James Webb Space Telescope and future 30-m telescopes on the ground. The only evidence that they ever occurred will be in the fossil abundance record.