Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
45 result(s) for "Bron, Emeric"
Sort by:
Dissociative recombination of N2H+: a revisited study
Dissociative recombination of N 2 H + is explored in a two-step theoretical study. In a first step, a diatomic (1D) rough model with a frozen NN bond and frozen angles is adopted, in the framework of the multichannel quantum defect theory (MQDT). The importance of the indirect mechanism and of the bending mode is revealed, in spite of the disagreement between our cross section and the experimental one. In the second step, we use our recently elaborated 3D approach based on the normal mode approximation combined with R-matrix theory and MQDT. This approach results in satisfactory agreement with storage-ring measurements, significantly better at very low energy than the former calculations.
Revealing which Combinations of Molecular Lines are Sensitive to the Gas Physical Parameters of Molecular Clouds
Atoms and molecules have long been thought to be versatile tracers of the cold neutral gas in the universe, from high-redshift galaxies to star forming regions and proto-planetary disks, because their internal degrees of freedom bear the signature of the physical conditions where these species reside. However, the promise that molecular emission has a strong diagnostic power of the underlying physical and chemical state is still hampered by the difficulty to combine sophisticated chemical codes with gas dynamics. It is therefore important 1) to acquire self-consistent data sets that can be used as templates for this theoretical work, and 2) to reveal the diagnostic capabilities of molecular lines accurately. The advent of sensitive wideband spectrometers in the (sub)- millimeter domain (e.g., IRAM-30m/EMIR, NOEMA, …) during the 2010s has allowed us to image a significant fraction of a Giant Molecular Cloud with enough sensitivity to detect tens of molecular lines in the 70 – 116 GHz frequency range. Machine learning techniques applied to these data start to deliver the next generation of molecular line diagnostics of mass, density, temperature, and radiation field.
Learning from model grids: Tracers of the ionization fraction in the ISM
The ionization fraction in neutral interstellar clouds is a key physical parameter controlling multiple physical and chemical processes, and varying by orders of magnitude from the UV irradiated surface of the cloud to its cosmic-ray dominated central regions. Traditional observational tracers of the ionization fraction, which mostly rely on deuteration ratios of molecules like HCO + , suffer from the fact that the deuterated molecules are only detected in a tiny fraction of a given Giant Molecular Cloud (GMC). In [1], we propose a machine learning -based, semi-automatic method to search in a large dataset of astrochemical model results for new tracers of the ionization fraction, and propose several new tracers relevant in different ranges of physical conditions.
Formation of the methyl cation by photochemistry in a protoplanetary disk
Forty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH 3 + (refs. 1 – 3 ), but so far it has not been observed outside the Solar System 4 , 5 . Alternative routes involving processes on grain surfaces have been invoked 6 , 7 . Here we report James Webb Space Telescope observations of CH 3 + in a protoplanetary disk in the Orion star-forming region. We find that gas-phase organic chemistry is activated by ultraviolet irradiation. JWST observations of CH 3 + in a protoplanetary disk in the Orion star-forming region are reported showing that gas-phase organic chemistry in the interstellar medium is activated by ultraviolet irradiation and the methyl cation.
Dissociative recombination of N $$_2$$ $$\\hbox {H}^+$$ : a revisited study
Dissociative recombination of N$$_2$$2 H$$^+$$+ is explored in a two-step theoretical study. In a first step, a diatomic (1D) rough model with a frozen NN bond and frozen angles is adopted, in the framework of the multichannel quantum defect theory (MQDT). The importance of the indirect mechanism and of the bending mode is revealed, in spite of the disagreement between our cross section and the experimental one. In the second step, we use our recently elaborated 3D approach based on the normal mode approximation combined with R-matrix theory and MQDT. This approach results in satisfactory agreement with storage-ring measurements, significantly better at very low energy than the former calculations.
OH as a probe of the warm-water cycle in planet-forming disks
Water is a key ingredient for the emergence of life as we know it. Yet, its destruction and reformation in space remain unprobed in warm gas ( T  > 300 K). Here we detect with the James Webb Space Telescope the emission of the hydroxyl radical (OH) from d203-506, a planet-forming disk exposed to external far-ultraviolet (FUV) radiation. These observations were made as part of the Early Release Science programme PDRs4All, which is focused on the Orion bar. The observed OH spectrum is compared with the results of quantum dynamical calculations to reveal two essential molecular processes. The highly excited rotational lines of OH in the mid-infrared are telltale signs of H 2 O destruction by FUV radiation. The OH rovibrational lines in the near-infrared are attributed to chemical excitation by the key reaction O + H 2  → OH + H, which seeds the formation of water in the gas phase. These results show that under warm and irradiated conditions, water is destroyed and efficiently reformed through gas-phase reactions. We infer that, in this source, the equivalent of Earth oceans’ worth of water is destroyed per month and replenished. This warm-water cycle could reprocess some water inherited from cold interstellar clouds and explain the lower deuterium fraction of water in Earth’s oceans compared with that found around protostars. The hydroxyl radical OH has been detected in a planet-forming disk exposed to ultraviolet radiation and in a rovibrationally excited state. These JWST observations, when coupled with quantum calculations, reveal the ongoing photodissociation of water and its reformation in the gas phase.
PDRs4All
Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1–3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the JamesWebb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
Revealing which Combinations of Molecular Lines are Sensitive to the Gas Physical Parameters of Molecular Clouds
Atoms and molecules have long been thought to be versatile tracers of the cold neutral gas in the universe, from high-redshift galaxies to star forming regions and proto-planetary disks, because their internal degrees of freedom bear the signature of the physical conditions where these species reside. However, the promise that molecular emission has a strong diagnostic power of the underlying physical and chemical state is still hampered by the difficulty to combine sophisticated chemical codes with gas dynamics. It is therefore important 1) to acquire self-consistent data sets that can be used as templates for this theoretical work, and 2) to reveal the diagnostic capabilities of molecular lines accurately. The advent of sensitive wideband spectrometers in the (sub)- millimeter domain (e.g., IRAM-30m/EMIR, NOEMA, …) during the 2010s has allowed us to image a significant fraction of a Giant Molecular Cloud with enough sensitivity to detect tens of molecular lines in the 70 – 116 GHz frequency range. Machine learning techniques applied to these data start to deliver the next generation of molecular line diagnostics of mass, density, temperature, and radiation field.
Dynamical effects of the radiative stellar feedback on the H I-to-H2 transition
The atomic-to-molecular hydrogen (H/H2) transition has been extensively studied as it controls the fraction of gas in a molecular state in an interstellar cloud. This fraction is linked to star-formation by the Schmidt-Kennicutt law. While theoretical estimates of the column density of the H I layer have been proposed for static photodissociation regions (PDRs), Herschel and well-resolved ALMA (Atacama Large Millimeter Array) observations have revealed dynamical effects in star forming regions, caused by the process of photoevaporation. We extend the analytic study of the H/H2 transition to include the effects of the propagation of the ionization front, in particular in the presence of photoevaporation at the walls of blister H II regions, and we find its consequences on the total atomic hydrogen column density at the surface of clouds in the presence of an ultraviolet field, and on the properties of the H/H2 transition. We solved semi-analytically the differential equation giving the H2 column density profile by taking into account H2 formation on grains, H2 photodissociation, and the ionization front propagation dynamics modeled as advection of the gas through the ionization front. Taking this advection into account reduces the width of the atomic region compared to static models. The atomic region may disappear if the ionization front velocity exceeds a certain value, leading the H/H2 transition and the ionization front to merge. For both dissociated and merged configurations, we provide analytical expressions to determine the total H I column density. Our results take the metallicity into account. Finally, we compared our results to observations of PDRs illuminated by O-stars, for which we conclude that the dynamical effects are strong, especially for low-excitation PDRs.
Efficient sampling of non log-concave posterior distributions with mixture of noises
This paper focuses on a challenging class of inverse problems that is often encountered in applications. The forward model is a complex non-linear black-box, potentially non-injective, whose outputs cover multiple decades in amplitude. Observations are supposed to be simultaneously damaged by additive and multiplicative noises and censorship. As needed in many applications, the aim of this work is to provide uncertainty quantification on top of parameter estimates. The resulting log-likelihood is intractable and potentially non-log-concave. An adapted Bayesian approach is proposed to provide credibility intervals along with point estimates. An MCMC algorithm is proposed to deal with the multimodal posterior distribution, even in a situation where there is no global Lipschitz constant (or it is very large). It combines two kernels, namely an improved version of (Preconditioned Metropolis Adjusted Langevin) PMALA and a Multiple Try Metropolis (MTM) kernel. Whenever smooth, its gradient admits a Lipschitz constant too large to be exploited in the inference process. This sampler addresses all the challenges induced by the complex form of the likelihood. The proposed method is illustrated on classical test multimodal distributions as well as on a challenging and realistic inverse problem in astronomy.