Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
276 result(s) for "Brooks, Ian M."
Sort by:
Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions
In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30 nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean. Which vapors are responsible for new particle formation in the Arctic is largely unknown. Here, the authors show that the formation of new particles at the central Arctic Ocean is mainly driven by iodic acid and that particles smaller than 30 nm in diameter can activate as cloud condensation nuclei.
Arctic Summer Airmass Transformation, Surface Inversions, and the Surface Energy Budget
During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m−2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.
Continuous observations of the surface energy budget and meteorology over the Arctic sea ice during MOSAiC
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreaker R/V Polarstern , following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.
A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements
A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ε can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.
Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles
Several recent studies have utilized a Haar wavelet covariance transform to provide automated detection of the boundary layer top from lidar backscatter profiles by locating the maximum in the covariance profiles. This approach is effective where the vertical gradient in the backscatter is small within and above the boundary layer, and where the inversion is sharp and well defined. These near-ideal conditions are often not met, particularly under stable stratification where the inversion may be deep and is sometimes ill defined, and vertical gradients are common. Here the effects of vertical gradients and inversion depth on the covariance transform are examined. It is found that a significant dilation-dependent bias in the determination of the boundary layer top may result when using the published method. An alternative approach is developed utilizing multiple wavelet dilations, and is capable of identifying both the upper and lower limits of the backscatter transition zone associated with the inversion while remaining insensitive to mean vertical gradients in the background signal. This approach enables more detailed information on the small-scale structure of the inversion and entrainment zone to be retrieved than is possible using existing techniques. [PUBLICATION ABSTRACT]
Sea spray fluxes from the southwest coast of the United Kingdom – dependence on wind speed and wave height
Fluxes of sea spray aerosols were measured with the eddy covariance technique from the Penlee Point Atmospheric Observatory (PPAO) on the southwest coast of the United Kingdom over several months from 2015 to 2017. Two different fast-responding aerosol instruments were employed: an ultra-fine condensation particle counter (CPC) that detects aerosols with a radius above ca. 1.5 nm and a compact lightweight aerosol spectrometer probe (CLASP) that provides a size distribution between ca. 0.1 and 6 µm. The measured sea spray emission fluxes essentially all originated from the shallow waters upwind, rather than from the surf zone/shore break. Fluxes from the CPC and from the CLASP (integrated over all sizes) were generally comparable, implying a reasonable closure in the aerosol number flux. Compared to most previous observations over the open ocean, at the same wind speed the mean sea spray number fluxes at PPAO are much greater. Significant wave height and wave Reynolds numbers explain more variability in sea spray fluxes than wind speed does, implying that enhanced wave breaking resulting from shoaling in shallow coastal waters is a dominant control on sea spray emission. Comparisons between two different wind sectors (open water vs. fetch-limited Plymouth Sound) and between two sets of sea states (growing vs. falling seas) further confirm the importance of wave characteristics on sea spray fluxes. These results suggest that spatial variability in wave characteristics need to be taken into account in predictions of coastal sea spray productions and also aerosol loading.
Publisher Correction: Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
The development of a miniaturised balloon-borne cloud water sampler and its first deployment in the high Arctic
The chemical composition of cloud water can be used to infer the sources of particles upon which cloud droplets and ice crystals have formed. In order to obtain cloud water for analysis of chemical composition for elevated clouds in the pristine high Arctic, balloon-borne active cloud water sampling systems are the optimal approach. However, such systems have not been feasible to deploy previously due to their weight and the challenging environmental conditions. We have taken advantage of recent developments in battery technology to develop a miniaturised cloud water sampler for balloon-borne collection of cloud water. Our sampler is a bulk sampler with a cloud drop cutoff diameter of approximately 8 µm and an estimated collection efficiency of 70%. The sampler was heated to prevent excessive ice accumulation and was able to operate for several hours under the extreme conditions encountered in the high Arctic. We have tested and deployed the new sampler on a tethered balloon during the Microbiology-Ocean-Cloud-Coupling in the High Arctic (MOCCHA) campaign in August and September 2018 close to the North pole. The sampler was able to successfully retrieve cloud water samples that were analysed to determine their chemical composition as well as their ice-nucleating activity. Given the pristine conditions found in the high Arctic we have placed significant emphasis on the development of a suitable cleaning procedure to minimise background contamination by the sampler itself.
Eddy covariance measurements of the sea spray aerosol flux over the open ocean
Direct eddy covariance measurements of size‐segregated sea spray aerosol fluxes over the open Atlantic Ocean are presented, along with a source function derived from them for a wind speed range of 4 to 18 m s−1 and a size range of 0.176 < R80 < 6.61 μm. This is in broad agreement with other recent estimates of the source function over this size range but shows a more rapid decrease with size above R80 = 2 μm than most other functions. The measurements were made during a 3 week cruise in the North Atlantic as part of the UK contribution to the international Surface Ocean–Lower Atmosphere Study (SOLAS) program. They utilized the new high‐rate Compact Lightweight Aerosol Spectrometer Probe (CLASP), providing a 16‐channel size spectrum (0.17
Meteorological and cloud conditions during the Arctic Ocean 2018 expedition
The Arctic Ocean 2018 (AO2018) took place in the central Arctic Ocean in August and September 2018 on the Swedish icebreaker Oden. An extensive suite of instrumentation provided detailed measurements of surface water chemistry and biology, sea ice and ocean physical and biogeochemical properties, surface exchange processes, aerosols, clouds, and the state of the atmosphere. The measurements provide important information on the coupling of the ocean and ice surface to the atmosphere and in particular to clouds. This paper provides (i) an overview of the synoptic-scale atmospheric conditions and their climatological anomaly to help interpret the process studies and put the detailed observations from AO2018 into a larger context, both spatially and temporally; (ii) a statistical analysis of the thermodynamic and near-surface meteorological conditions, boundary layer, cloud, and fog characteristics; and (iii) a comparison of the results to observations from earlier Arctic Ocean expeditions – in particular AOE1996 (Arctic Ocean Expedition 1996), SHEBA (Surface Heat Budget of the Arctic Ocean), AOE2001 (Arctic Ocean Experiment 2001), ASCOS (Arctic Summer Cloud Ocean Study), ACSE (Arctic Clouds in Summer Experiment), and AO2016 (Arctic Ocean 2016) – to provide an assessment of the representativeness of the measurements. The results show that near-surface conditions were broadly comparable to earlier experiments; however the thermodynamic vertical structure was quite different. An unusually high frequency of well-mixed boundary layers up to about 1 km depth occurred, and only a few cases of the “prototypical” Arctic summer single-layer stratocumulus deck were observed. Instead, an unexpectedly high amount of multiple cloud layers and mid-level clouds were present throughout the campaign. These differences from previous studies are related to the high frequency of cyclonic activity in the central Arctic in 2018.