Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
39
result(s) for
"Brosch, Mario"
Sort by:
Obesity accelerates epigenetic aging of human liver
2014
Significance Because obese people are at an increased risk of many age-related diseases, it is a plausible hypothesis that obesity increases the biological age of some tissues and cell types. However, it has been difficult to detect such an accelerated aging effect because it is unclear how to measure tissue age. Here we use a recently developed biomarker of aging (known as “epigenetic clock”) to study the relationship between epigenetic age and obesity in several human tissues. We report an unexpectedly strong correlation between high body mass index and the epigenetic age of liver tissue. This finding may explain why obese people suffer from the early onset of many age-related pathologies, including liver cancer.
Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an “epigenetic clock”) to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver ( r = 0.42, P = 6.8 × 10 ⁻⁴ in dataset 1 and r = 0.42, P = 1.2 × 10 ⁻⁴ in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10 ⁻⁹) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.
Journal Article
A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis
2015
Felix Stickel and colleagues report the results of a genome-wide association study of alcohol-related cirrhosis. They confirm
PNPLA3
as a susceptibility locus and identify new association signals in
MBOAT7
and
TM6SF2
.
Alcohol misuse is the leading cause of cirrhosis and the second most common indication for liver transplantation in the Western world
1
,
2
,
3
. We performed a genome-wide association study for alcohol-related cirrhosis in individuals of European descent (712 cases and 1,426 controls) with subsequent validation in two independent European cohorts (1,148 cases and 922 controls). We identified variants in the
MBOAT7
(
P
= 1.03 × 10
−9
) and
TM6SF2
(
P
= 7.89 × 10
−10
) genes as new risk loci and confirmed rs738409 in
PNPLA3
as an important risk locus for alcohol-related cirrhosis (
P
= 1.54 × 10
−48
) at a genome-wide level of significance. These three loci have a role in lipid processing, suggesting that lipid turnover is important in the pathogenesis of alcohol-related cirrhosis.
Journal Article
Loss of hepatic Mboat7 leads to liver fibrosis
by
Aigner, Elmar
,
Chavakis, Triantafyllos
,
Brosch, Mario
in
Acyltransferase
,
Acyltransferases - deficiency
,
Acyltransferases - genetics
2021
ObjectiveThe rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD.DesignMice with hepatocyte-specific deletion of MBOAT7 (Mboat7Δhep) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies.ResultsAllelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7Δhep mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7Δhep mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7Δhep livers and human rs641738TT carriers were similar.ConclusionMboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.
Journal Article
Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression
2019
Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients’ sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.
Journal Article
Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control
2018
A deeper epigenomic understanding of spatial organization of cells in human tissues is an important challenge. Here we report the first combined positional analysis of transcriptomes and methylomes across three micro-dissected zones (pericentral, intermediate and periportal) of human liver. We identify pronounced anti-correlated transcriptional and methylation gradients including a core of 271 genes controlling zonated metabolic and morphogen networks and observe a prominent porto-central gradient of DNA methylation at binding sites of 46 transcription factors. The gradient includes an epigenetic and transcriptional Wnt signature supporting the concept of a pericentral hepatocyte regeneration pathway under steady-state conditions. While donors with non-alcoholic fatty liver disease show consistent gene expression differences corresponding to the severity of the disease across all zones, the relative zonated gene expression and DNA methylation patterns remain unchanged. Overall our data provide a wealth of new positional insights into zonal networks controlled by epigenetic and transcriptional gradients in human liver.
Spatial mapping of genomic programs in tissue cells is an important step in the understanding of organ function and disease. Here, the authors provide a spatially resolved epigenomic and transcriptomic map of human liver and show porto-central gradients in metabolic and morphogen networks and transcription factor binding sites as a basis to better understand liver regeneration and function.
Journal Article
Cell atlas of the regenerating human liver after portal vein embolization
2024
The liver has the remarkable capacity to regenerate. In the clinic, regeneration is induced by portal vein embolization, which redirects portal blood flow, resulting in liver hypertrophy in locations with increased blood supply, and atrophy of embolized segments. Here, we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the regenerating liver. Our data unveils pervasive upregulation of genes associated with developmental processes, cellular adhesion, and inflammation in post-portal vein embolization liver, disrupted portal-central hepatocyte zonation, and altered cell subtype composition of endothelial and immune cells. Interlineage crosstalk analysis reveals mesenchymal cells as an interaction hub between immune and endothelial cells, and highlights the importance of extracellular matrix proteins in liver regeneration. Moreover, we establish tissue-scale iterative indirect immunofluorescence imaging for high-dimensional spatial analysis of perivascular microenvironments, uncovering changes to tissue architecture in regenerating liver lobules. Altogether, our data is a rich resource revealing cellular and histological changes in human liver regeneration.
The liver has the remarkable ability to regenerate. Applying single-cell transcriptomics and iterative immunofluorescence imaging on patient-derived samples, this study revealed cellular gene expression changes linked to altered tissue architecture.
Journal Article
Aberrant DNA methylation of ADAMTS16 in colorectal and other epithelial cancers
by
Brosch, Mario
,
Siebert, Reiner
,
Kordowski, Felix
in
ADAMTS Proteins - genetics
,
ADAMTS Proteins - metabolism
,
ADAMTS16
2018
Background
ADAMs (a disintegrin and metalloproteinase) have long been associated with tumor progression. Recent findings indicate that members of the closely related ADAMTS (ADAMs with thrombospondin motifs) family are also critically involved in carcinogenesis. Gene silencing through DNA methylation at CpG loci around e.g. transcription start or enhancer sites is a major mechanism in cancer development. Here, we aimed at identifying genes of the ADAM and ADAMTS family showing altered DNA methylation in the development or colorectal cancer (CRC) and other epithelial tumors.
Methods
We investigated potential changes of DNA methylation affecting
ADAM
and
ADAMTS
genes in 117 CRC, 40 lung cancer (LC) and 15 oral squamous-cell carcinoma (SCC) samples. Tumor tissue was analyzed in comparison to adjacent non-malignant tissue of the same patients. The methylation status of 1145 CpGs in 51
ADAM
and
ADAMTS
genes was measured with the HumanMethylation450 BeadChip Array. ADAMTS16 protein expression was analyzed in CRC samples by immunohistochemistry.
Results
In CRC, we identified 72 CpGs in 18 genes which were significantly affected by hyper- or hypomethylation in the tumor tissue compared to the adjacent non-malignant tissue. While notable/frequent alterations in methylation patterns within
ADAM
genes were not observed, conspicuous changes were found in
ADAMTS16
and
ADAMTS2
. To figure out whether these differences would be CRC specific, additional LC and SCC tissue samples were analyzed. Overall, 78 differentially methylated CpGs were found in LC and 29 in SCC. Strikingly, 8 CpGs located in the
ADAMTS16
gene were commonly differentially methylated in all three cancer entities. Six CpGs in the promoter region were hypermethylated, whereas 2 CpGs in the gene body were hypomethylated indicative of gene silencing. In line with these findings, ADAMTS16 protein was strongly expressed in globlet cells and colonocytes in control tissue but not in CRC samples. Functional in vitro studies using the colorectal carcinoma cell line HT29 revealed that ADAMTS16 expression restrained tumor cell proliferation.
Conclusions
We identified
ADAMTS16
as novel gene with cancer-specific promoter hypermethylation in CRC, LC and SCC patients implicating
ADAMTS16
as potential biomarker for these tumors. Moreover, our results provide evidence that
ADAMTS16
may have tumor suppressor properties.
Journal Article
A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease
2007
With an overall prevalence of 10–20%, gallstone disease (cholelithiasis) represents one of the most frequent and economically relevant health problems of industrialized countries
1
,
2
. We performed an association scan of >500,000 SNPs in 280 individuals with gallstones and 360 controls. A follow-up study of the 235 most significant SNPs in 1,105 affected individuals and 873 controls replicated the disease association of SNP A-1791411 in
ABCG8
(allelic
P
value
P
CCA
= 4.1 × 10
−9
), which was subsequently attributed to coding variant rs11887534 (D19H). Additional replication was achieved in 728 German (
P
= 2.8 × 10
−7
) and 167 Chilean subjects (
P
= 0.02). The overall odds ratio for D19H carriership was 2.2 (95% confidence interval: 1.8–2.6,
P
= 1.4 × 10
−14
) in the full German sample. Association was stronger in subjects with cholesterol gallstones (odds ratio = 3.3), suggesting that His19 might be associated with a more efficient transport of cholesterol into the bile.
Journal Article
The HSF1-CPT1a Pathway Is Differentially Regulated in NAFLD Progression
by
Brosch, Mario
,
Schreiber, Stefan
,
Sandkühler, Friedrich
in
Antibodies
,
bariatric surgery
,
Biopsy
2022
Obesity and obesity-associated diseases represent one of the key health challenges of our time. In this context, aberrant hepatic lipid accumulation is a central pathological aspect of non-alcoholic fatty liver disease (NAFLD). By comparing methylation signatures of liver biopsies before and after bariatric surgery, we recently demonstrated the strong enrichment of differentially methylated heat shock factor 1 (HSF1) binding sites (>400-fold) in the process of liver remodeling, indicating a crucial role of HSF1 in modulating central aspects of NAFLD pathogenesis. Using cellular models of NAFLD, we were able to show that HSF1 is activated during fat accumulation in hepatocytes, mimicking conditions in patients before bariatric surgery. This induction was abolished by starving the cells, mimicking the situation after bariatric surgery. Regarding this connection, carnitine palmitoyltransferase 1 isoform A (CTP1a), a central regulator of lipid beta-oxidation, was identified as a HSF1 target gene by promoter analysis and HSF1 knockdown experiments. Finally, pharmacological activation of HSF1 through celastrol reduced fat accumulation in the cells in a HSF1-dependent manner. In conclusion, we were able to confirm the relevance of HSF1 activity and described a functional HSF1-CPT1a pathway in NAFLD pathogenesis.
Journal Article
B Lymphocyte Stimulator (BLyS) Is Expressed in Human Adipocytes In Vivo and Is Related to Obesity but Not to Insulin Resistance
2014
Inflammation and metabolism have been shown to be evolutionary linked and increasing evidence exists that pro-inflammatory factors are involved in the pathogenesis of obesity and type 2 diabetes. Until now, most data suggest that within adipose tissue these factors are secreted by cells of the innate immune system, e. g. macrophages. In the present study we demonstrate that B lymphocyte stimulator (BLyS) is increased in human obesity. In contrast to several pro-inflammatory factors, we found the source of BLyS in human adipose tissue to be the adipocytes rather than immune cells. In grade 3 obese human subjects, expression of BLyS in vivo in adipose tissue is significantly increased (p<0.001). Furthermore, BLyS serum levels are elevated in grade 3 human obesity (862.5+222.0 pg/ml vs. 543.7+60.7 pg/ml in lean controls, p<0.001) and are positively correlated to the BMI (r = 0.43, p<0.0002). In the present study, bariatric surgery significantly altered serum BLyS concentrations. In contrast, weight loss due to a very-low-calorie-formula-diet (800 kcal/d) had no such effect. To examine metabolic activity of BLyS, in a translational research approach, insulin sensitivity was measured in human subjects in vivo before and after treatment with the human recombinant anti-BLyS antibody belimumab. Since BLyS is known to promote B-cell proliferation and immunoglobulin secretion, the present data suggest that adipocytes of grade 3 obese human subjects are able to activate the adaptive immune system, suggesting that in metabolic inflammation in humans both, innate and adaptive immunity, are of pathophysiological relevance.
Journal Article