Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
242 result(s) for "Brown, Kenneth N."
Sort by:
Personal Digital Twin: A Close Look into the Present and a Step towards the Future of Personalised Healthcare Industry
Digital twins (DTs) play a vital role in revolutionising the healthcare industry, leading to more personalised, intelligent, and proactive healthcare. With the evolution of personalised healthcare, there is a significant need to represent a virtual replica for individuals to provide the right type of care in the right way and at the right time. Therefore, in this paper, we surveyed the concept of a personal digital twin (PDT) as an enhanced version of the DT with actionable insight capabilities. In particular, PDT can bring value to patients by enabling more accurate decision making and proper treatment selection and optimisation. Then, we explored the progression of PDT as a revolutionary technology in healthcare research and industry. However, although several research works have been performed for smart healthcare using DT, PDT is still at an early stage. Consequently, we believe that this work can be a step towards smart personalised healthcare industry by guiding the design of industrial personalised healthcare systems. Accordingly, we introduced a reference framework that empowers smart personalised healthcare using PDTs by bringing together existing advanced technologies (i.e., DT, blockchain, and AI). Then, we described some selected use cases, including the mitigation of COVID-19 contagion, COVID-19 survivor follow-up care, personalised COVID-19 medicine, personalised osteoporosis prevention, personalised cancer survivor follow-up care, and personalised nutrition. Finally, we identified further challenges to pave the PDT paradigm toward the smart personalised healthcare industry.
Blockchain-Empowered Digital Twins Collaboration: Smart Transportation Use Case
Digital twins (DTs) is a promising technology in the revolution of the industry and essential for Industry 4.0. DTs play a vital role in improving distributed manufacturing, providing up-to-date operational data representation of physical assets, supporting decision-making, and avoiding the potential risks in distributed manufacturing systems. Furthermore, DTs need to collaborate within distributed manufacturing systems to predict the risks and reach consensus-based decision-making. However, DTs collaboration suffers from single failure due to attack and connection in a centralized manner, data interoperability, authentication, and scalability. To overcome the above challenges, we have discussed the major high-level requirements for the DTs collaboration. Then, we have proposed a conceptual framework to fulfill the DTs collaboration requirements by using the combination of blockchain, predictive analysis techniques, and DTs technologies. The proposed framework aims to empower more intelligence DTs based on blockchain technology. In particular, we propose a concrete ledger-based collaborative DTs framework that focuses on real-time operational data analytics and distributed consensus algorithms. Furthermore, we describe how the conceptual framework can be applied using smart transportation system use cases, i.e., smart logistics and railway predictive maintenance. Finally, we highlighted the future direction to guide interested researchers in this interesting area.
Motion Sensors-Based Machine Learning Approach for the Identification of Anterior Cruciate Ligament Gait Patterns in On-the-Field Activities in Rugby Players
Anterior cruciate ligament (ACL) injuries are common among athletes. Despite a successful return to sport (RTS) for most of the injured athletes, a significant proportion do not return to competitive levels, and thus RTS post ACL reconstruction still represents a challenge for clinicians. Wearable sensors, owing to their small size and low cost, can represent an opportunity for the management of athletes on-the-field after RTS by providing guidance to associated clinicians. In particular, this study aims to investigate the ability of a set of inertial sensors worn on the lower-limbs by rugby players involved in a change-of-direction (COD) activity to differentiate between healthy and post-ACL groups via the use of machine learning. Twelve male participants (six healthy and six post-ACL athletes who were deemed to have successfully returned to competitive rugby and tested in the 5–10 year period following the injury) were recruited for the study. Time- and frequency-domain features were extracted from the raw inertial data collected. Several machine learning models were tested, such as k-nearest neighbors, naïve Bayes, support vector machine, gradient boosting tree, multi-layer perceptron, and stacking. Feature selection was implemented in the learning model, and leave-one-subject-out cross-validation (LOSO-CV) was adopted to estimate training and test errors. Results obtained show that it is possible to correctly discriminate between healthy and post-ACL injury subjects with an accuracy of 73.07% (multi-layer perceptron) and sensitivity of 81.8% (gradient boosting). The results of this study demonstrate the feasibility of using body-worn motion sensors and machine learning approaches for the identification of post-ACL gait patterns in athletes performing sport tasks on-the-field even a number of years after the injury occurred.
Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition
Human activity recognition (HAR) has become an increasingly popular application of machine learning across a range of domains. Typically the HAR task that a machine learning algorithm is trained for requires separating multiple activities such as walking, running, sitting, and falling from each other. Despite a large body of work on multi-class HAR, and the well-known fact that the performance on a multi-class problem can be significantly affected by how it is decomposed into a set of binary problems, there has been little research into how the choice of multi-class decomposition method affects the performance of HAR systems. This paper presents the first empirical comparison of multi-class decomposition methods in a HAR context by estimating the performance of five machine learning algorithms when used in their multi-class formulation, with four popular multi-class decomposition methods, five expert hierarchies—nested dichotomies constructed from domain knowledge—or an ensemble of expert hierarchies on a 17-class HAR data-set which consists of features extracted from tri-axial accelerometer and gyroscope signals. We further compare performance on two binary classification problems, each based on the topmost dichotomy of an expert hierarchy. The results show that expert hierarchies can indeed compete with one-vs-all, both on the original multi-class problem and on a more general binary classification problem, such as that induced by an expert hierarchy’s topmost dichotomy. Finally, we show that an ensemble of expert hierarchies performs better than one-vs-all and comparably to one-vs-one, despite being of lower time and space complexity, on the multi-class problem, and outperforms all other multi-class decomposition methods on the two dichotomous problems.
Comparing Person-Specific and Independent Models on Subject-Dependent and Independent Human Activity Recognition Performance
The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data from many users achieves better subject-independent performance than one trained with data from a single person, and whether one trained with data from a single specific target user performs better for that user than one trained with data from many. To those ends, we compare four popular machine learning algorithms’ subject-dependent and subject-independent performances across eight datasets using three different personalisation–generalisation approaches, which we term person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs). We further consider three different ways to construct such an ensemble: unweighted, κ -weighted, and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ -weighted EPSMs—the best-performing EPSM type—by 16.4% in terms of the subject-independent performance.
Digital Twins Collaboration for Automatic Erratic Operational Data Detection in Industry 4.0
Digital twin (DT) plays a pivotal role in the vision of Industry 4.0. The idea is that the real product and its virtual counterpart are twins that travel a parallel journey from design and development to production and service life. The intelligence that comes from DTs’ operational data supports the interactions between the DTs to pave the way for the cyber-physical integration of smart manufacturing. This paper presents a conceptual framework for digital twins collaboration to provide an auto-detection of erratic operational data by utilizing operational data intelligence in the manufacturing systems. The proposed framework provide an interaction mechanism to understand the DT status, interact with other DTs, learn from each other DTs, and share common semantic knowledge. In addition, it can detect the anomalies and understand the overall picture and conditions of the operational environments. Furthermore, the proposed framework is described in the workflow model, which breaks down into four phases: information extraction, change detection, synchronization, and notification. A use case of Energy 4.0 fault diagnosis for wind turbines is described to present the use of the proposed framework and DTs collaboration to identify and diagnose the potential failure, e.g., malfunctioning nodes within the energy industry.
Blockchain-Based Digital Twins Collaboration for Smart Pandemic Alerting: Decentralized COVID-19 Pandemic Alerting Use Case
Emerging technologies such as digital twins, blockchain, Internet of Things (IoT), and Artificial Intelligence (AI) play a vital role in driving the industrial revolution in all domains, including the healthcare sector. As a result of COVID-19 pandemic outbreak, there is a significant need for medical cyber-physical systems to adopt these emerging technologies to combat COVID-19 paramedic crisis. Also, acquiring secure real-time data exchange and analysis across multiple participants is essential to support the efforts against COVID-19. Therefore, we have introduced a blockchain-based collaborative digital twins framework for decentralized epidemic alerting to combat COVID-19 and any future pandemics. The framework has been proposed to bring together the existing advanced technologies (i.e., blockchain, digital twins, and AI) and then provide a solution to decentralize epidemic alerting to combat COVID-19 outbreaks. Also, we have described how the conceptual framework can be applied in the decentralized COVID-19 pandemic alerting use case.
Planning the deployment of multiple sinks and relays in wireless sensor networks
Wireless sensor networks are subject to failures. Deployment planning should ensure that when a data sink or sensor node fails, the remaining network can still be connected, and so may require placing multiple sinks and relay nodes in addition to sensor nodes. For network performance requirements, there may also be path-length constraints for each sensor node. We propose four algorithms, Greedy-MSP and GRASP-MSP to solve the problem of multiple sink placement, and Greedy-MSRP and GRASP-MSRP for the problem of multiple sink and relay placement. Greedy-MSP and GRASP-MSP minimise the deployment cost, while ensuring that each sensor node in the network is double-covered, i.e. it has two length-constrained paths to two sinks. Greedy-MSRP and GRASP-MSRP deploys sinks and relays to minimise the deployment cost and to guarantee that all sensor nodes in the network are double-covered and noncritical. A sensor node is noncritical if upon its removal, all remaining sensor nodes still have length-constrained paths to sinks. We evaluate the algorithms empirically and show that these algorithms outperform the closely-related algorithms from the literature for the lowest total deployment cost.
Modelling revenue generation in a dynamically priced mobile telephony service
Dynamic pricing has been used extensively in specific markets for many years but recent years have seen an interest in the utilization of this approach for the deployment of novel and attractive tariff structures for mobile communication services. This paper describes the development and operation of an agent based model (ABM) for subscriber behavior in a dynamically priced mobile telephony network. The design of the ABM was based on an analysis of real call detail records recorded in a Uganda mobile telephony network in which dynamic pricing was deployed. The ABM includes components which simulate subscriber calling behavior, mobility within the network and social linkages. Using this model, this paper reports on an investigation of a number of alternative strategies for the dynamic pricing algorithm which indicate that the network operator will likely experience revenue losses ranging from a 5 %, when the pricing algorithm is based on offering high value subscriber cohort enhanced random discounts compared to a lower value subscriber cohort, to 30 %, when the priding algorithm results in the discount on offer in a cell being inversely proportional to the contemporary cell load. Additionally, the model appears to suggest that the use of optimization algorithms to control the level of discount offered in cells would likely result in discount simply converging to a “no-discount” scenario. Finally, commentary is offered on additional factors which need to be considered when interpreting the results of this work such as the impact of subscriber churn on the size of the subscriber base and the technical and marketing challenges of deploying the various dynamic pricing algorithms which have been investigated.
A Constraint Programming Approach for Solving a Queueing Design and Control Problem
A facility with frontroom and backroom operations has the option of hiring specialized or cross-trained workers. Cross-trained workers can be switched between the two rooms depending on demand but are more expensive than specialized ones. Assuming stochastic customer arrival and service times, we seek a smallest-cost combination of cross-trained and specialized workers, together with a policy for switching the cross-trained workers between the rooms, which satisfies constraints on the expected customer waiting time and expected number of workers in the back room. A constraint programming approach using logic-based Benders' decomposition is presented. Experimental results demonstrate the strong performance of this approach across a wide variety of problem parameters. This paper provides one of the first links between queueing optimization problems and constraint programming.