Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
643 result(s) for "Bruce, Mark Paul"
Sort by:
The Anglo-Scottish border and the shaping of identity, 1300-1600
\"Theorizing the Borders: Scotland and the Shaping of Identity in Medieval Britain explores the roles that Scotland and England play in one another's imaginations. This collection of essays brings together eminent scholars and emerging voices from the frequently divergent fields of English and Scottish medieval studies to address such questions as: How do subjects on both sides of the Anglo-Scottish border define themselves in relation to one another? In what ways do they influence each other's sense of historical, cultural, and national identity? What stories do they tell about one another, and to what ends? How does the shifting political balance--as well as the shifting border--between the two kingdoms complicate notions of Scottishness and Englishness? What happens to important texts, genres, and even poetic forms when they cross this border? How do texts produced in the Anglo-Scottish borderlands transform mainstream notions of Scottish and English identities?\"-- Provided by publisher.
Sovereign amnesias: Literature, nationalism, and the shadow of Scotland in late medieval Britain
My dissertation examines the role of Anglo-Scottish conflict in English and Scottish discourses of national identity of the late Middle Ages. I begin by analyzing the curiously few traces of Scotland that remain in such English poetic works as the Alliterative Morte Arthure, Chaucer's Man of Law's Tale, and the Stanzaic Morte Arthure. I argue that Scotland was so central to the development of an insular English national identity---both as an entity to be conquered and as an \"other\" against which Englishness could define itself---and simultaneously such a threat to the very foundations of Englishness (as a marker of an alternate insular identity and national mythology) that its invocation caused a crisis of representation in late medieval English courtly literature. Too vital to disappear altogether, yet too threatening to be dealt with overtly, Scotland came to exist as a necessary but unspeakable presence, always menacing from beyond the margins of official Englishness. Moving to texts produced in close affinity to the Scottish monarchy, such as Walter Bower's Scotichronicon , I demonstrate how Anglo-Scottish conflict caused an even more paradoxical problem within representations of Scottishness. The rhetoric of these Scottish texts, I find, does not simply position itself against England as a national \"Other,\" but against the complete dissolution of Scottishness itself. The official Scottish chronicles and romances, drawing their narrative power from events---such as the Battle of Bannockburn---in which the very identity the texts promote was nearly aborted, go to great lengths to suppress the potential annihilations of identity upon which they themselves are based. As illuminating foils to the more official texts, I also consider texts produced on the Anglo-Scottish border, including the Awntyrs of Arthure at the Tarn Watheling and the Chronicon de Lanercost, showing how these border productions can often stare directly at what the official texts suppress and how they even critique that suppression. As a coda in the final chapter, I demonstrate the role of linguistic and material translation in the survival of the foregoing violent rhetorics of identity as significant forces in both Scottish and American nationalisms of the present day.
Hemostasis, coagulation and thrombin in venoarterial and venovenous extracorporeal membrane oxygenation: the HECTIC study
Extracorporeal membrane oxygenation (ECMO) support has a high incidence of both bleeding and thrombotic complications. Despite clear differences in patient characteristics and pathologies between veno-venous (VV) and veno-arterial (VA) ECMO support, anticoagulation practices are often the same across modalities. Moreover, there is very little data on their respective coagulation profiles and comparisons of thrombin generation in these patients. This study compares the coagulation profile and thrombin generation between patients supported with either VV and VA ECMO. A prospective cohort study of patients undergoing VA and VV ECMO at an Intensive care department of a university hospital and ECMO referral centre. In addition to routine coagulation testing and heparin monitoring per unit protocol, thromboelastography (TEG), multiplate aggregometry (MEA), calibrated automated thrombinography (CAT) and von-Willebrand’s activity (antigen and activity ratio) were sampled second-daily for 1 week, then weekly thereafter. VA patients had significantly lower platelets counts, fibrinogen, anti-thrombin and clot strength with higher d-dimer levels than VV patients, consistent with a more pronounced consumptive coagulopathy. Thrombin generation was higher in VA than VV patients, and the heparin dose required to suppress thrombin generation was lower in VA patients. There were no significant differences in total bleeding or thrombotic event rates between VV and VA patients when adjusted for days on extracorporeal support. VA patients received a lower median daily heparin dose 8500 IU [IQR 2500–24000] versus VV 28,800 IU [IQR 17,300–40,800.00]; < 0.001. Twenty-eight patients (72%) survived to hospital discharge; comprising 53% of VA patients and 77% of VV patients. Significant differences between the coagulation profiles of VA and VV patients exist, and anticoagulation strategies for patients of these modalities should be different. Further research into the development of tailored anticoagulation strategies that include the mode of ECMO support need to be completed.
Different Martian Crustal Seismic Velocities Across the Dichotomy Boundary From Multi‐Orbiting Surface Waves
We have observed both minor‐arc (R1) and major‐arc (R2) Rayleigh waves for the largest marsquake (magnitude of 4.7 ± 0.2) ever recorded. Along the R1 path (in the lowlands), inversion results show that a simple, two‐layer model with an interface located at 21–29 km and an upper crustal shear‐wave velocity of 3.05–3.17 km/s can fit the group velocity measurements. Along the R2 path, observations can be explained by upper crustal thickness models constrained from gravity data and upper crustal shear‐wave velocities of 2.61–3.27 and 3.28–3.52 km/s in the lowlands and highlands, respectively. The shear‐wave velocity being faster in the highlands than in the lowlands indicates the possible existence of sedimentary rocks, and relatively higher porosity in the lowlands. Plain Language Summary The largest marsquake ever recorded occurred recently and waves propagating at the surface, called surface waves, have been observed. Owing to the relatively large magnitude (i.e., 4.7 ± 0.2) of this event, surface wave energy is still clearly visible after one orbit around the red planet. The shortest path taken by the wave propagating between the source and the receiver is located in the northern lowlands, near the boundary with the southern highlands (called dichotomy). The surface wave traveling in the opposite direction, following the longer distance between the quake and the seismic station, mostly passes through the highlands. Analyses of these two paths reveal that the average shear‐wave velocity is faster in the highlands than in the lowlands near the dichotomy boundary. This lower velocity in the lowlands may be due to the presence of thick accumulations of sedimentary rocks and relatively higher porosity. Key Points Analyses of the minor‐arc and major‐arc Rayleigh waves reveal different Martian crustal structures across the dichotomy boundary The average shear‐wave velocity is faster in the highlands than in the lowlands near the dichotomy boundary The lower shear‐wave velocity in the lowlands may be due to the presence of sedimentary rocks and relatively higher porosity
A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes
A closed-loop system (also called an artificial pancreas) may improve glycemic outcomes in children with type 1 diabetes. In this 16-week trial, the glucose level was in the target range for a greater percentage of time with a closed-loop system than with a sensor-augmented insulin pump.
Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass
Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation1–6. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass1,3,5, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO27,8. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The future effect of eCO2 we derive from experiments is geographically consistent with past changes in greenness9, but is considerably lower than the past effect derived from models10. If borne out, our results suggest that the stimulatory effect of CO2 on carbon storage could slow considerably this century. Our research provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.Elevated CO2 increases plant biomass, providing a negative feedback on global warming. Nutrient availability was found to drive the magnitude of this effect for the majority of vegetation globally, and analyses indicated that CO2 will continue to fertilize plant growth in the next century.
Fat cells directly sense temperature to activate thermogenesis
Classic brown fat and inducible beige fat both dissipate chemical energy in the form of heat through the actions of mitochondrial uncoupling protein 1. This nonshivering thermogenesis is crucial for mammals as a defense against cold and obesity/diabetes. Cold is known to act indirectly through the sympathetic nervous systems and β-adrenergic signaling, but here we report that cool temperature (27–33 °C) can directly activate a thermogenic gene program in adipocytes in a cell-autonomous manner. White and beige fat cells respond to cool temperatures, but classic brown fat cells do not. Importantly, this activation in isolated cells is independent of the canonical cAMP/Protein Kinase A/cAMP response element-binding protein pathway downstream of the β-adrenergic receptors. These findings provide an unusual insight into the role of adipose tissues in thermoregulation, as well as an alternative way to target nonshivering thermogenesis for treatment of obesity and metabolic diseases.
Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer
Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) are effective for many patients with lung cancer with EGFR mutations. However, not all patients are responsive to EGFR TKIs, including even those harboring EGFR-sensitizing mutations. In this study, we quantified the cells and cellular interaction features of the tumor microenvironment (TME) using routine H&E-stained biopsy sections. These TME features were used to develop a prediction model for survival benefit from EGFR TKI therapy in patients with lung adenocarcinoma and EGFR-sensitizing mutations in the Lung Cancer Mutation Consortium 1 (LCMC1) and validated in an independent LCMC2 cohort. In the validation data set, EGFR TKI treatment prolonged survival in the predicted-to-benefit group but not in the predicted-not-to-benefit group. Among patients treated with EGFR TKIs, the predicted-to-benefit group had prolonged survival outcomes compared with the predicted not-to-benefit group. The EGFR TKI survival benefit positively correlated with tumor-tumor interaction image features and negatively correlated with tumor-stroma interaction. Moreover, the tumor-stroma interaction was associated with higher activation of the hepatocyte growth factor/MET-mediated PI3K/AKT signaling pathway and epithelial-mesenchymal transition process, supporting the hypothesis of fibroblast-involved resistance to EGFR TKI treatment.
Seismic detection of a deep mantle discontinuity within Mars by InSight
Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressureinduced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m².