Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Brudzinski, M. R."
Sort by:
Seismic magnitude clustering is prevalent in field and laboratory catalogs
Clustering of earthquake magnitudes is still actively debated, compared to well-established spatial and temporal clustering. Magnitude clustering is not currently implemented in earthquake forecasting but would be important if larger magnitude events are more likely to be followed by similar sized events. Here we show statistically significant magnitude clustering present in many different field and laboratory catalogs at a wide range of spatial scales (mm to 1000 km). It is universal in field catalogs across fault types and tectonic/induced settings, while laboratory results are unaffected by loading protocol or rock types and show temporal stability. The absence of clustering can be imposed by a global tensile stress, although clustering still occurs when isolating to triggered event pairs or spatial patches where shear stress dominates. Magnitude clustering is most prominent at short time and distance scales and modeling indicates >20% repeating magnitudes in some cases, implying it can help to narrow physical mechanisms for seismogenesis. Clustering of earthquake magnitudes is actively debated. Here, the authors show statistically significant magnitude clustering present in many different field and laboratory catalogs at a wide range of spatial scales (mm to 1000 km).
Evidence for a Large-Scale Remnant of Subducted Lithosphere beneath Fiji
We combine spatial variations of P- and S-wave speeds, 1000 fault plane solutions, and 6600 well-determined hypocenters to investigate the nature of subducted lithosphere and deep earthquakes beneath the Tonga back-arc. We show that perplexing patterns in seismicity and fault plane solutions can be accounted for by the juxtaposition of a steep-dipping Wadati-Benioff zone and a subhorizontal remnant of slab that is no longer attached to the actively subducting lithosphere. The detached slab may be from a previous episode of subduction along the fossil Vitiaz trench about 5 to 8 million years ago. The juxtaposition of slabs retains a large amount of subducted material in the transition zone of the mantle. Such a configuration, if common in the past, would allow the preservation of a primordial component in the lower mantle.
Great Sumatra-Andaman Earthquake of 26 December 2004
The two largest earthquakes of the past 40 years ruptured a 1600-kilometer-long portion of the fault boundary between the Indo-Australian and southeastern Eurasian plates on 26 December 2004 [seismic moment magnitude (M[subscript w]) = 9.1 to 9.3] and 28 March 2005 (M[subscript w] = 8.6). The first event generated a tsunami that caused more than 283,000 deaths. Fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller. Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer.
Response to Comment on \The Great Sumatra-Andaman Earthquake of 26 December 2004\
We support the revised estimate of tsunami source length (∼800 km) obtained by Neetu et al . Sea-level monitoring with a high sampling rate, good azimuthal coverage, and real-time access, along with detailed bathymetry data around the stations, would improve source region estimation from tsunami arrival times.
Slab morphology in the Cascadia fore arc and its relation to episodic tremor and slip
Episodic tremor and slip (ETS) events in subduction zones occur in the general vicinity of the plate boundary, downdip of the locked zone. In developing an understanding of the ETS phenomenon it is important to relate the spatial occurrence of nonvolcanic tremor to the principal structural elements within the subduction complex. In Cascadia, active and passive source seismic data image a highly reflective, dipping, low‐velocity zone (LVZ) beneath the fore‐arc crust; however, its continuity along the margin is not established with certainty, and its interpretation is debated. In this work we have assembled a large teleseismic body wave data set comprising stations from northern California to northern Vancouver Island. Using stacked receiver functions we demonstrate that the LVZ is well developed along the entire margin from the coast eastward to the fore‐arc basins (Georgia Strait, Puget Sound, and Willamette Valley). Combined with observations and predictions of intraslab seismicity, seismic velocity structure, and tremor hypocenters, our results support the thesis that the LVZ represents the signature of subducted oceanic crust, consistent with thermal‐petrological modeling of subduction zone metamorphism. The location of tremor epicenters along the revised slab contours indicates their occurrence close to but seaward of the wedge corner. Based on evidence for high pore fluid pressure within the oceanic crust and a downdip transition in permeability of the plate interface, we propose a conceptual model for the generation of ETS where the occurrence and recurrence of propagating slow slip and low‐frequency tremor are explained by episodic pore fluid pressure buildup and fluid release into or across the plate boundary.
Creation and Assessment of an Active e-Learning Introductory Geology Course
The recent emphasis in higher education on both student engagement and online learning encouraged the authors to develop an active e-leaming environment for an introductory geohazards course, which enrolls 70+ undergraduate students per semester. Instructors focused on replicating the achievements and addressing the challenges within an already established face-to-face student-centered class (Brudzinski and Sikorski 2010; Sit 2013). Through the use of a learning management system (LMS) and other available technologies, a wide range of course components were developed including online homework assignments with automatic grading and tailored feedback, video tutorials of software programs like Google Earth and Microsoft Excel, and more realistic scientific investigations using authentic and freely available data downloaded from the internet. The different course components designed to engage students and improve overall student learning and development were evaluated using student surveys and instructor reflection. Each component can be used independently and intertwined into a face-to-face course. Results suggest that significant opportunities are available in an online environment including the potential for improved student performance and new datasets for educational research. Specifically, results from pre and post-semester Geoscience Concept Inventory (GCI) testing in an active e-learning course show enhanced student learning gains compared to face-to-face lecture-based and student-centered courses.
Nonvolcanic tremor along the Oaxaca segment of the Middle America subduction zone
The Oaxaca subduction zone is an ideal area for detailed studies of plate boundary deformation as rapid convergent rates, shallow subduction, and short trench‐to‐coast distances bring the thermally defined seismogenic and transition zones of the plate interface over 100 km inland. Previous analysis of slow slip events in southern Mexico suggests that they may represent motion in the transition zone, defining the downdip edge of future megathrust earthquakes. A new deployment consisting of broadband seismometers distributed inland along the Oaxaca segment provide the means to examine whether nonvolcanic tremor (NVT) signals can also be used to characterize the boundary between the seismogenic and transition zones. In this study, we established that NVT exists in the Oaxaca region based on waxing and waning of seismic energy on filtered day‐long seismograms that were correlated across neighboring stations and were further supported by appropriate relative time moveouts in record sections and spectrograms with narrow frequency bands. Eighteen prominent NVT episodes that lasted upwards of a week were identified during the 15 months analyzed (June 2006 to September 2007), recurring as frequently as every 2–3 months in a given region. We analyze NVT envelope waveforms with a semiautomated process for identifying prominent energy bursts, and analyst‐refined relative arrival times are inverted for source locations. NVT burst epicenters primarily occur between the 40–50 km contours for depth of the plate interface, except in eastern Oaxaca where they shift toward the 30 km contour as the slab steepens. NVT hypocenters correlate well with a high conductivity zone that is interpreted to be due to slab fluids. NVT is more frequent, shorter in duration, and located further inland than GPS‐detected slow slip, while the latter is associated with a zone of ultra‐slow velocity interpreted to represent high pore fluid pressure. This zone of slow slip corresponds to approximately 350°C–450°C, with megathrust earthquakes, microseismicity, and strong long‐term coupling occurring immediately updip from it. This leaves NVT primarily in a region further inland from the thermally defined transition zone, suggesting that transition from locking to free slip may occur in more than one phase.