Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Bruijn, Lucie"
Sort by:
Modeling ALS with motor neurons derived from human induced pluripotent stem cells
In this Review, a collaboration of leading experts in amyotrophic lateral sclerosis (ALS) research present the state of the field regarding the use patient-derived induced pluripotent stem cells to generate motor neurons in vitro . Motor neuron characterization, including transcriptomics, molecular markers, neuron function and electrophysiology, are discussed in the context of maturation and disease. Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.
UNRAVELING THE MECHANISMS INVOLVED IN MOTOR NEURON DEGENERATION IN ALS
▪ Abstract  Although Charcot described amyotrophic lateral sclerosis (ALS) more than 130 years ago, the mechanism underlying the characteristic selective degeneration and death of motor neurons in this common adult motor neuron disease has remained a mystery. There is no effective remedy for this progressive, fatal disorder. Modern genetics has now identified mutations in one gene [Cu/Zn superoxide dismutase (SOD1)] as a primary cause and implicated others [encoding neurofilaments, cytoplasmic dynein and its processivity factor dynactin, and vascular endothelial growth factor (VEGF)] as contributors to, or causes of, motor neuron diseases. These insights have enabled development of model systems to test hypotheses of disease mechanism and potential therapies. Along with errors in the handling of synaptic glutamate and the potential excitotoxic response this provokes, these model systems highlight the involvement of nonneuronal cells in disease progression and provide new therapeutic strategies.
β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression
Rewrite the pharmacopoeia The β-lactam antibiotics — penicillin and its semisynthetic derivatives — act by inhibiting bacterial synthetic pathways, and their success has in part been because they have little effect on their hosts. So it's a complete surprise to find that many of these β-lactams also act on the dominant excitatory neurotransmitter transporter system in the mammalian central nervous system. The mechanism of action involves activation of GLT1 , the gene for glutamate transport. In animal models of ischaemic injury and motor neuron degeneration, ceftriaxone is neuroprotective, and in the animal model of the fatal disease amyotrophic lateral sclerosis (Lou Gehrig's disease), it increases the survival rate of mice. These studies provide a completely new drug target for scores of highly safe pharmaceuticals and may lead to new therapies for neurological disease. Glutamate is the principal excitatory neurotransmitter in the nervous system. Inactivation of synaptic glutamate is handled by the glutamate transporter GLT1 (also known as EAAT2; refs 1 , 2 ), the physiologically dominant astroglial protein. In spite of its critical importance in normal and abnormal synaptic activity, no practical pharmaceutical can positively modulate this protein. Animal studies show that the protein is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including amyotrophic lateral sclerosis (ALS) 3 , stroke 4 , brain tumours 5 and epilepsy 6 . Using a blinded screen of 1,040 FDA-approved drugs and nutritionals, we discovered that many β-lactam antibiotics are potent stimulators of GLT1 expression. Furthermore, this action appears to be mediated through increased transcription of the GLT1 gene 7 . β-Lactams and various semi-synthetic derivatives are potent antibiotics that act to inhibit bacterial synthetic pathways 8 . When delivered to animals, the β-lactam ceftriaxone increased both brain expression of GLT1 and its biochemical and functional activity. Glutamate transporters are important in preventing glutamate neurotoxicity 1 , 9 , 10 , 11 . Ceftriaxone was neuroprotective in vitro when used in models of ischaemic injury and motor neuron degeneration, both based in part on glutamate toxicity 11 . When used in an animal model of the fatal disease ALS, the drug delayed loss of neurons and muscle strength, and increased mouse survival. Thus these studies provide a class of potential neurotherapeutics that act to modulate the expression of glutamate neurotransmitter transporters via gene activation.
Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data
The cause of sporadic ALS is currently unknown. Despite evidence for a role for genetics, no common genetic variants have been unequivocally linked to sporadic ALS. We sought to identify genetic variants associated with an increased or decreased risk for developing ALS in a cohort of American sporadic cases. We undertook a genome-wide association study using publicly available samples from 276 patients with sporadic ALS and 271 neurologically normal controls. 555 352 unique SNPs were assayed in each sample using the Illumina Infinium II HumanHap550 SNP chip. More than 300 million genotypes were produced in 547 participants. These raw genotype data are freely available on the internet and represent the first publicly accessible SNP data for ALS cases. 34 SNPs with a p value less than 0·0001 (two degrees of freedom) were found, although none of these reached significance after Bonferroni correction. We generated publicly available genotype data for sporadic ALS patients and controls. No single locus was definitively associated with increased risk of developing disease, although potentially associated candidate SNPs were identified.
Aggregation and Motor Neuron Toxicity of an ALS-Linked SOD1 Mutant Independent from Wild-Type SOD1
Analysis of transgenic mice expressing familial amyotrophic lateral sclerosis (ALS)-linked mutations in the enzyme superoxide dismutase (SOD1) have shown that motor neuron death arises from a mutant-mediated toxic property or properties. In testing the disease mechanism, both elimination and elevation of wild-type SOD1 were found to have no effect on mutant-mediated disease, which demonstrates that the use of SOD mimetics is unlikely to be an effective therapy and raises the question of whether toxicity arises from superoxide-mediated oxidative stress. Aggregates containing SOD1 were common to disease caused by different mutants, implying that coaggregation of an unidentified essential component or components or aberrant catalysis by misfolded mutants underlies a portion of mutant-mediated toxicity.
Absence of Neurofilaments Reduces the Selective Vulnerability of Motor Neurons and Slows Disease Caused by a Familial Amyotrophic Lateral Sclerosis-Linked Superoxide Dismutase 1 Mutant
Mutations in superoxide dismutase 1 (SOD1), the only proven cause of amyotrophic lateral sclerosis (ALS), provoke disease through an unidentified toxic property. Neurofilament aggregates are pathologic hallmarks of both sporadic and SOD1-mediated familial ALS. By deleting NF-L, the major neurofilament subunit required for filament assembly, onset and progression of disease caused by familial ALS-linked SOD1 mutant G85R are significantly slowed, while selectivity of mutant-mediated toxicity for motor neurons is reduced. In NF-L-deleted animals, levels of the two remaining neurofilament subunits, NF-M and NF-H, are markedly reduced in axons but are elevated in motor neuron cell bodies. Thus, while neither perikaryal nor axonal neurofilaments are essential for SOD1-mediated disease, the absence of assembled neurofilaments both diminishes selective vulnerability and slows SOD1G85Rmutant-mediated toxicity to motor neurons.
Therapeutic targets for amyotrophic lateral sclerosis: current treatments and prospects for more effective therapies
Although amyotrophic lateral sclerosis (ALS) was described more than 130 years ago, the cause(s) of most cases of this adult motor neuron disease remains a mystery. With the discovery of mutations in one gene (Cu/Zn superoxide dismutase) as a primary cause of some forms of ALS, model systems have been developed that have helped us begin to understand mechanisms involved in motor neuron death and enabled testing of potential new therapies. Several other genes have been implicated as risk factors in motor neuron diseases, including neurofilaments, cytoplasmic dynein and dynactin, vascular endothelial growth factor, and angiogenin. With advances in the basic research of the disease, many hypotheses accounting for motor neuron death are being explored, including loss of trophic support, protein mishandling, mitochondrial dysfunction, excitotoxicity, axonal abnormalities and inflammation. Many of these mechanisms are the focus of research in other neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's disease.
The Miami Framework for ALS and related neurodegenerative disorders: an integrated view of phenotype and biology
Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum — from clinically silent, to prodromal, to clinically manifest — and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes — motor neuron, frontotemporal and extrapyramidal — rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.In this Perspective, the authors propose a new classification system for amyotrophic lateral sclerosis and related neurodegenerative disorders that recognizes, in parallel, the clinical syndromes and the underlying biology of disease. The framework emerged from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023).
Amyotrophic Lateral Sclerosis: An Emerging Era of Collaborative Gene Discovery
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease (MND). It is currently incurable and treatment is largely limited to supportive care. Family history is associated with an increased risk of ALS, and many Mendelian causes have been discovered. However, most forms of the disease are not obviously familial. Recent advances in human genetics have enabled genome-wide analyses of single nucleotide polymorphisms (SNPs) that make it possible to study complex genetic contributions to human disease. Genome-wide SNP analyses require a large sample size and thus depend upon collaborative efforts to collect and manage the biological samples and corresponding data. Public availability of biological samples (such as DNA), phenotypic and genotypic data further enhances research endeavors. Here we discuss a large collaboration among academic investigators, government, and non-government organizations which has created a public repository of human DNA, immortalized cell lines, and clinical data to further gene discovery in ALS. This resource currently maintains samples and associated phenotypic data from 2332 MND subjects and 4692 controls. This resource should facilitate genetic discoveries which we anticipate will ultimately provide a better understanding of the biological mechanisms of neurodegeneration in ALS.