Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Brundin, Lou"
Sort by:
Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions
2021
Fibrotic scar tissue limits central nervous system regeneration in adult mammals. The extent of fibrotic tissue generation and distribution of stromal cells across different lesions in the brain and spinal cord has not been systematically investigated in mice and humans. Furthermore, it is unknown whether scar-forming stromal cells have the same origin throughout the central nervous system and in different types of lesions. In the current study, we compared fibrotic scarring in human pathological tissue and corresponding mouse models of penetrating and non-penetrating spinal cord injury, traumatic brain injury, ischemic stroke, multiple sclerosis and glioblastoma. We show that the extent and distribution of stromal cells are specific to the type of lesion and, in most cases, similar between mice and humans. Employing in vivo lineage tracing, we report that in all mouse models that develop fibrotic tissue, the primary source of scar-forming fibroblasts is a discrete subset of perivascular cells, termed type A pericytes. Perivascular cells with a type A pericyte marker profile also exist in the human brain and spinal cord. We uncover type A pericyte-derived fibrosis as a conserved mechanism that may be explored as a therapeutic target to improve recovery after central nervous system lesions.
Fibrotic scar tissue limits central nervous system regeneration. Here, Dias et al. show that fibrotic scarring is common in mice and humans, following distinct lesions to the adult brain and spinal cord, and derives from a discrete population of GLAST-expressing perivascular cells.
Journal Article
Blocking PDGF-CC signaling ameliorates multiple sclerosis-like neuroinflammation by inhibiting disruption of the blood–brain barrier
by
Nilsson, Ingrid
,
Moessinger, Christine
,
Muhl, Lars
in
631/378/1341
,
631/378/371
,
Angiogenesis
2020
Disruption of blood–brain barrier (BBB) integrity is a feature of various neurological disorders. Here we found that the BBB is differently affected during the preclinical, progression and remission phase of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We have identified an upregulation of pro-inflammatory and pro-angiogenic factors in the BBB transcriptome and down-regulation of endothelial tight junction members coinciding with elevated BBB leakage specifically during the progression phase. These changes were antagonized by blocking PDGFRα signaling with the small tyrosine kinase inhibitor imatinib. Moreover, targeting the PDGFRα ligand PDGF-CC using a neutralizing antibody, facilitated recovery of BBB integrity and improvement of EAE symptoms. Intracerebroventricular injection of PDGF-CC induced upregulation, whereas blocking PDGF-CC during EAE led to downregulation of
Tnfa
and
Il1a
at the BBB. Our findings suggest that blocking PDGF-CC counteracts fundamental aspects of endothelial cell activation and disruption of the BBB by decreasing
Tnfa
and
Il1a
expression. We also demonstrate that both PDGF-CC and its receptor PDGFRα were upregulated in MS lesions indicating that blocking PDGF-CC may be considered a novel treatment for MS.
Journal Article
Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course
2011
Background: Levels of CXCL13, a potent B-cell chemoattractant, are elevated in the cerebrospinal fluid (CSF) during multiple sclerosis (MS) and are associated with markers of MS activity. Levels decrease upon effective treatments.
Objective: Here we validate the potential role of CSF CXCL13 as a biomarker for aspects of MS in a large amount of clinical material, the majority collected at early diagnostic work-up.
Methods: CXCL13 was measured by ELISA in 837 subjects: relapsing–remitting MS (RRMS; n = 323), secondary progressive MS (SPMS; n = 40), primary progressive MS (PPMS; n = 24), clinically isolated syndrome (CIS; n = 79), other neurological diseases (ONDs; n = 181), ONDs with signs of inflammation or viral/bacterial infections (iONDs; n = 176) and healthy controls (n = 14).
Results: Subjects with viral/bacterial infections had extremely high CXCL13 levels compared to all included groups (p < 0.0001). CXCL13 was otherwise significantly higher in MS compared to the remaining controls (p < 0.0001), and CIS (p < 0.01). A significant and positive correlation between CXCL13 and relapse rate, the results obtained for the Expanded Disability Status Scale (EDSS) and the number of lesions detected by MRI was demonstrated. CXCL13 was increased in CIS conversion to clinically definite MS (p < 0.001). Oligoclonal immunoglobulin band (OCB)-positive CIS or MS had significantly increased CXCL13 levels compared to OCB-negative CIS or MS (p < 0.001 and p < 0.0001, respectively).
Conclusion: CXCL13 was associated with disease exacerbations and unfavourable prognosis in RRMS. Increased CXCL13 was not specific for MS since subjects with viral/bacterial infections exhibited even higher levels. High levels predicted CIS conversion to MS. We suggest that measurement of CSF CXCL13 can be part of the armamentarium in the diagnostic and prognostic work-up in MS and be of help in future treatment decisions.
Journal Article
MEsenchymal StEm cells for Multiple Sclerosis (MESEMS): a randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis
2019
Background
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system with a degenerative component, leading to irreversible disability. Mesenchymal stem cells (MSC) have been shown to prevent inflammation and neurodegeneration in animal models of MS, but no large phase II clinical trials have yet assessed the exploratory efficacy of MSC for MS.
Methods/design
This is an academic, investigator-initiated, randomized, double-blind, placebo-compared phase I/II clinical trial with autologous, bone-marrow derived MSC in MS. Enrolled subjects will receive autologous MSC at either baseline or at week 24, through a cross-over design. Primary co-objectives are to test safety and efficacy of MSC treatment compared to placebo at 6 months. Secondary objectives will evaluate the efficacy of MSC at clinical and MRI levels. In order to overcome funding constraints, the MEsenchymal StEm cells for Multiple Sclerosis (MESEMS) study has been designed to merge partially independent clinical trials, following harmonized protocols and sharing some key centralized procedures, including data collection and analyses.
Discussion
Results will provide patients and the scientific community with data on the safety and efficacy of MSC for MS. The innovative approach utilized to obtain funds to support the MESEMS trial could represent a new model to circumvent limitation of funds encountered by academic trials.
Trial registration
Andalusia:
NCT01745783
, registered on Dec 10, 2012.
Badalona:
NCT02035514
EudraCT, 2010–024081–21. Registered on 2012.
Canada: ClinicalTrials.gov,
NCT02239393
. Registered on September 12, 2014.
Copenhagen: EudraCT,
2012–000518-13
. Registered on June 21, 2012.
Italy: EudraCT, 2011–001295-19, and ClinicalTrials.gov,
NCT01854957
. Retrospectively registered on May 16, 2013.
London: Eudra CT 2012–002357-35, and ClinicalTrials.gov,
NCT01606215
. Registered on May 25, 2012.
Salzburg: EudraCT,
2015–000137-78
. Registered on September 15, 2015.
Stockholm: ClinicalTrials.gov,
NCT01730547
. Registered on November 21, 2012.
Toulouse: ClinicalTrials.gov,
NCT02403947
. Registered on March 31, 2015.
Journal Article
Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis
by
Tumani, Hayrettin
,
Hughes, Steve
,
Bartos, Ales
in
Biological and medical sciences
,
Biomarkers - cerebrospinal fluid
,
Consensus
2013
The choice of appropriate control group(s) is critical in cerebrospinal fluid (CSF) biomarker research in multiple sclerosis (MS). There is a lack of definitions and nomenclature of different control groups and a rationalized application of different control groups. We here propose consensus definitions and nomenclature for the following groups: healthy controls (HCs), spinal anesthesia subjects (SASs), inflammatory neurological disease controls (INDCs), peripheral inflammatory neurological disease controls (PINDCs), non-inflammatory neurological controls (NINDCs), symptomatic controls (SCs). Furthermore, we discuss the application of these control groups in specific study designs, such as for diagnostic biomarker studies, prognostic biomarker studies and therapeutic response studies. Application of these uniform definitions will lead to better comparability of biomarker studies and optimal use of available resources. This will lead to improved quality of CSF biomarker research in MS and related disorders.
Journal Article
Mesenchymal stem cells transplanted into spinal cord injury adopt immune cell-like characteristics
by
Covacu, Ruxandra
,
Frostell, Arvid
,
Sankavaram, Sreenivasa Raghavan
in
Apoptosis
,
Astrocytes
,
Ataxin
2019
Background
Mesenchymal stem cells (MSCs) and their cellular response to various stimuli have been characterized in great detail in culture conditions. In contrast, the cellular response of MSCs in an in vivo setting is still uncharted territory. In this study, we investigated the cellular response of MSCs following transplantation into spinal cord injury (SCI).
Methods
Mouse bone marrow-derived MSCs were transplanted 24 h following severe contusion SCI in mice. As controls, MSCs transplanted to the uninjured spinal cord and non-transplanted MSCs were used. At 7 days post transplantation, the MSCs were isolated from the SCI, and their global transcriptional changes, survival, differentiation, proliferation, apoptosis, and phenotypes were investigated using RNA sequencing, immunohistochemistry, and flow cytometry.
Results
MSCs transplanted into SCI downregulated genes related to cell-cycle regulation/progression, DNA metabolic/biosynthetic process, and DNA repair and upregulated genes related to immune system response, cytokine production/response, response to stress/stimuli, signal transduction and signaling pathways, apoptosis, and phagocytosis/endocytosis. MSCs maintained their surface expression of Sca1 and CD29 but upregulated expression of CD45 following transplantation. Transplanted MSCs maintained their surface expression of MHC-I but upregulated surface expression of MHC-II. Transplanted MSCs survived and proliferated to a low extent, did not express Caspase-3, and did not differentiate into neurons or astrocytes.
Conclusion
MSCs transplanted into SCI upregulate expression of CD45 and MHC-II and expression of genes related to cytokine production, phagocytosis/endocytosis, and immune cells/response and thereby adopt immune cell-like characteristics within the recipient.
Journal Article
Stem cell-derived brainstem mouse astrocytes obtain a neurotoxic phenotype in vitro upon neuroinflammation
by
Lindblad, Caroline
,
Svensson, Mikael
,
Zachariadis, Vasilios
in
Allergology
,
Analysis
,
Astrocytes
2023
Background
Astrocytes respond to injury and disease through a process known as reactive astrogliosis, of which inflammatory signaling is one subset. This inflammatory response is heterogeneous with respect to the inductive stimuli and the afflicted central nervous system region. This is of plausible importance in e.g. traumatic axonal injury (TAI), where lesions in the brainstem carries a particularly poor prognosis. In fact, astrogliotic forebrain astrocytes were recently suggested to cause neuronal death following axotomy. We therefore sought to assess if ventral brainstem- or rostroventral spinal astrocytes exert similar effects on motor neurons in vitro.
Methods
We derived brainstem/rostroventral spinal astrocyte-like cells (ES-astrocytes) and motor neurons using directed differentiation of mouse embryonic stem cells (ES). We activated the ES-astrocytes using the neurotoxicity-eliciting cytokines interleukin- (IL-) 1α and tumor necrosis factor-(TNF-)α and clinically relevant inflammatory mediators. In co-cultures with reactive ES-astrocytes and motor neurons, we assessed neurotoxic ES-astrocyte activity, similarly to what has previously been shown for other central nervous system (CNS) regions.
Results
We confirmed the brainstem/rostroventral ES-astrocyte identity using RNA-sequencing, immunocytochemistry, and by comparison with primary subventricular zone-astrocytes. Following cytokine stimulation, the c-Jun N-terminal kinase pathway down-stream product phosphorylated c-Jun was increased, thus demonstrating ES-astrocyte reactivity. These reactive ES-astrocytes conferred a contact-dependent neurotoxic effect upon co-culture with motor neurons. When exposed to IL-1β and IL-6, two neuroinflammatory cytokines found in the cerebrospinal fluid and serum proteome following human severe traumatic brain injury (TBI), ES-astrocytes exerted similar effects on motor neurons. Activation of ES-astrocytes by these cytokines was associated with pathways relating to endoplasmic reticulum stress and altered regulation of MYC.
Conclusions
Ventral brainstem and rostroventral spinal cord astrocytes differentiated from mouse ES can exert neurotoxic effects in vitro. This highlights how neuroinflammation following CNS lesions can exert region- and cell-specific effects. Our in vitro model system, which uniquely portrays astrocytes and neurons from one niche, allows for a detailed and translationally relevant model system for future studies on how to improve neuronal survival in particularly vulnerable CNS regions following e.g. TAI.
Journal Article
Intense Inflammation and Nerve Damage in Early Multiple Sclerosis Subsides at Older Age: A Reflection by Cerebrospinal Fluid Biomarkers
by
Al Nimer, Faiez
,
Khademi, Mohsen
,
Harris, Robert A.
in
Age factors
,
Aged
,
Autoimmune diseases
2013
Inflammatory mediators have crucial roles in leukocyte recruitment and subsequent central nervous system (CNS) neuroinflammation. The extent of neuronal injury and axonal loss are associated with the degree of CNS inflammation and determine physical disability in multiple sclerosis (MS). The aim of this study was to explore possible associations between a panel of selected cerebrospinal fluid biomarkers and robust clinical and demographic parameters in a large cohort of patients with MS and controls (n = 1066) using data-driven multivariate analysis. Levels of matrix metalloproteinase 9 (MMP9), chemokine (C-X-C motif) ligand 13 (CXCL13), osteopontin (OPN) and neurofilament-light chain (NFL) were measured by ELISA in 548 subjects comprising different MS subtypes (relapsing-remitting, secondary progressive and primary progressive), clinically isolated syndrome and persons with other neurological diseases with or without signs of inflammation/infection. Principal component analyses and orthogonal partial least squares methods were used for unsupervised and supervised interrogation of the data. Models were validated using data from a further 518 subjects in which one or more of the four selected markers were measured. There was a significant association between increased patient age and lower levels of CXCL13, MMP9 and NFL. CXCL13 levels correlated well with MMP9 in the younger age groups, but less so in older patients, and after approximately 54 years of age the levels of CXCL13 and MMP9 were consistently low. CXCL13 and MMP9 levels also correlated well with both NFL and OPN in younger patients. We demonstrate a strong effect of age on both inflammatory and neurodegenerative biomarkers in a large cohort of MS patients. The findings support an early use of adequate immunomodulatory disease modifying drugs, especially in younger patients, and may provide a biological explanation for the relative inefficacy of such treatments in older patients at later disease stages.
Journal Article
Mass spectrometry-based analysis of cerebrospinal fluid from arthritis patients—immune-related candidate proteins affected by TNF blocking treatment
by
Khademi, Mohsen
,
Svenungsson, Elisabet
,
Idborg, Helena
in
Adult
,
Aged
,
Ankylosing spondylitis
2019
Background
Signs of inflammation in cerebrospinal fluid (CSF) of rheumatoid arthritis patients correlate positively with fatigue, a central nervous system (CNS)-related symptom that can be partially suppressed by TNF blockade. This suggests a possible role for CNS inflammation in arthritis that may be affected by TNF blockade. We therefore investigated the effects of TNF blockade on the arthritis CSF proteome and how candidate proteins related to clinical measures of disease activity and inflammation.
Methods
Mass spectrometry-based quantitative proteomic analysis was performed on CSF from seven polyarthritis patients before and during infliximab treatment. Treatment-associated proteins were identified using univariate (Wilcoxon signed rank test) and multivariate (partial least squares discriminant analysis (PLS-DA)) strategies. Relations between selected candidate proteins and clinical measures were investigated using the Spearman correlations. Additionally, selected proteins were cross-referenced to other studies investigating human CSF in a thorough literature search to ensure feasibility of our results.
Results
Univariate analysis of arthritis CSF proteome revealed a decrease of 35 proteins, predominantly involved in inflammatory processes, following TNF blockade. Seven candidate proteins, Contactin-1 (CNTN1), fibrinogen gamma chain (FGG), hemopexin (HPX), cell adhesion molecule-3 (CADM3), alpha-1B-glycoprotein (A1BG), complement factor B (CFB), and beta-2-microglobulin (B2M), were selected for further studies based on identification by both univariate and multivariate analyses and reported detection in human CSF and known associations to arthritis. Decreased levels of FGG and CFB in CSF after treatment showed strong correlations with both erythrocyte sedimentation rate and disability scores, while CNTN1 and CADM3 were associated with pain.
Conclusion
Several immune-related proteins in the CSF of arthritis patients decreased during TNF blockade, including FGG and CFB that both correlated strongly with systemic inflammation. Our findings stress that also intrathecal inflammatory pathways are related to arthritis symptoms and may be affected by TNF blockade.
Journal Article
Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis
by
Kramarova, Tatiana
,
Adzemovic, Milena Z.
,
Tegnér, Jesper
in
5-Methylcytosine - analogs & derivatives
,
5-Methylcytosine - metabolism
,
Adult
2019
Background
Due to limited access to brain tissue, the precise mechanisms underlying neuro-axonal dysfunction in neurological disorders such as multiple sclerosis (MS) are largely unknown. In that context, profiling DNA methylation, which is a stable and cell type-specific regulatory epigenetic mark of genome activity, offers a unique opportunity to characterize the molecular mechanisms underpinning brain pathology in situ. We examined DNA methylation patterns of neuronal nuclei isolated from post-mortem brain tissue to infer processes that occur in neurons of MS patients.
Results
We isolated subcortical neuronal nuclei from post-mortem white matter tissue of MS patients and non-neurological controls using flow cytometry. We examined bulk DNA methylation changes (total
n
= 29) and further disentangled true DNA methylation (5mC) from neuron-specific DNA hydroxymethylation (5hmC) (
n
= 17), using Illumina Infinium 450K arrays. We performed neuronal sub-type deconvolution using glutamate and GABA methylation profiles to further reduce neuronal sample heterogeneity. In total, we identified 2811 and 1534 significant (genome-wide adjusted
P
value < 0.05) differentially methylated and hydroxymethylated positions between MS patients and controls. We found striking hypo-5mC and hyper-5hmC changes occurring mainly within gene bodies, which correlated with reduced transcriptional activity, assessed using published RNAseq data from bulk brain tissue of MS patients and controls. Pathway analyses of the two cohorts implicated dysregulation of genes involved in axonal guidance and synaptic plasticity, with meta-analysis confirming CREB signalling as the most highly enriched pathway underlying these processes. We functionally investigated DNA methylation changes of CREB signalling-related genes by immunohistofluoresence of phosphorylated CREB in neurons from brain sections of a subcohort of MS patients and controls (
n
= 15). Notably, DNA methylation changes associated with a reduction of CREB activity in white matter neurons of MS patients compared to controls.
Conclusions
Our data demonstrate that investigating 5mC and 5hmC modifications separately allows the discovery of a substantial fraction of changes occurring in neurons, which can escape traditional bisulfite-based DNA methylation analysis. Collectively, our findings indicate that neurons of MS patients acquire sustained hypo-5mC and hyper-5hmC, which may impair CREB-mediated neuro-axonal integrity, in turn relating to clinical symptoms.
Journal Article