Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
125 result(s) for "Brunelli, Andrea"
Sort by:
Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai–Kadai languages
The Tai–Kadai (TK) language family is thought to have originated in southern China and spread to Thailand and Laos, but it is not clear if TK languages spread by demic diffusion (i.e., a migration of people from southern China) or by cultural diffusion, with native Austroasiatic (AA) speakers switching to TK languages. To address this and other questions, we obtained 1234 complete mtDNA genome sequences from 51 TK and AA groups from Thailand and Laos. We find high genetic heterogeneity across the region, with 212 different haplogroups, and significant genetic differentiation among different samples from the same ethnolinguistic group. TK groups are more genetically homogeneous than AA groups, with the latter exhibiting more ancient/basal mtDNA lineages, and showing more drift effects. Modeling of demic diffusion, cultural diffusion, and admixture scenarios consistently supports the spread of TK languages by demic diffusion.
Helicobacter pylori’s historical journey through Siberia and the Americas
The gastric bacterium Helicobacter pylori shares a coevolutionary history with humans that predates the out-of-Africa diaspora, and the geographical specificities of H. pylori populations reflect multiple well-known human migrations. We extensively sampled H. pylori from 16 ethnically diverse human populations across Siberia to help resolve whether ancient northern Eurasian populations persisted at high latitudes through the last glacial maximum and the relationships between present-day Siberians and Native Americans. A total of 556 strains were cultivated and genotyped by multilocus sequence typing, and 54 representative draft genomes were sequenced. The genetic diversity across Eurasia and the Americas was structured into three populations: hpAsia2, hpEastAsia, and hpNorthAsia. hpNorthAsia is closely related to the subpopulation hspIndigenousAmericas from Native Americans. Siberian bacteria were structured into five other subpopulations, two of which evolved through a divergence from hpAsia2 and hpNorthAsia, while three originated though Holocene admixture. The presence of both anciently diverged and recently admixed strains across Siberia support both Pleistocene persistence and Holocene recolonization. We also show that hspIndigenousAmericas is endemic in human populations across northern Eurasia. The evolutionary history of hspIndigenousAmericas was reconstructed using approximate Bayesian computation, which showed that it colonized the New World in a single migration event associated with a severe demographic bottleneck followed by low levels of recent admixture across the Bering Strait.
Y chromosomal evidence on the origin of northern Thai people
The Khon Mueang represent the major group of people present in today's northern Thailand. While linguistic and genetic data seem to support a shared ancestry between Khon Mueang and other Tai-Kadai speaking people, the possibility of an admixed origin with contribution from local Mon-Khmer population could not be ruled out. Previous studies conducted on northern Thai people did not provide a definitive answer and, in addition, have largely overlooked the distribution of paternal lineages in the area. In this work we aim to provide a comprehensive analysis of Y paternal lineages in northern Thailand and to explicitly model the origin of the Khon Mueang population. We obtained and analysed new Y chromosomal haplogroup data from more than 500 northern Thai individuals including Khon Mueang, Mon-Khmer and Tai-Kadai. We also explicitly simulated different demographic scenarios, developed to explain the Khon Mueang origin, employing an ABC simulation framework on both mitochondrial and Y microsatellites data. Our results highlighted a similar haplogroup composition of Khon Mueang and Tai-Kadai populations in northern Thailand, with shared high frequencies of haplogroups O-PK4, O-M117 and O-M111. Our ABC simulations also favoured a model in which the ancestors of modern Khon Mueang originated recently after a split from the other Tai-Kadai populations. Our different analyses concluded that the ancestors of Khon Mueang are likely to have originated from the same source of the other Tai-Kadai groups in southern China, with subsequent admixture events involving native Mon-Khmer speakers restricted to some specific populations.
Fragility curves of masonry buildings in aggregate accounting for local mechanisms and site effects
The seismic evaluation of masonry buildings in aggregate, largely diffused within the existing Italian and European building stock, represents a difficult and open task that has not been exhaustively investigated so far. The study proposes a procedure aimed at evaluating the potential impact of the combination of local mechanisms and site-amplification in terms of fragility curves on an existing unreinforced masonry (URM) aggregate which is made of five adjacent structural units mutually interacting with each other during seismic sequences. The case study is inspired by built heritage of the historic centre of Visso struck by the Central Italy 2016/2017 earthquakes. The in-plane (IP) response of URM buildings was simulated through nonlinear dynamic analyses performed on a 3D equivalent frame model of the structure, whereas out-of-plane (OOP) mechanisms were analysed by adopting the rigid-block assumption but assuming, as seismic input, the floor accelerations derived from the post-processing of data derived from the global 3D model. An innovative procedure considering the pounding effect to the global response of the building is also presented. Two soil conditions were assumed with (freefield) and without (bedrock) site amplification. The results showed that site effects strongly affected the seismic vulnerability of the aggregate, also altering the combination between IP and OOP mechanisms. In fact, for bedrock condition, especially for medium–high damage levels, local mechanisms were prevailing with respect to the IP response. Conversely, for freefield condition, IP mainly governed the overall behaviour for all the damage levels, consistently with the field evidence.
Numerical simulation of the seismic response and soil–structure interaction for a monitored masonry school building damaged by the 2016 Central Italy earthquake
Despite significant research advances on the seismic response analysis, there is still an urgent need for validation of numerical simulation methods for prediction of earthquake response and damage. In this respect, seismic monitoring networks and proper modelling can further support validation studies, allowing more realistic simulations of what earthquakes can produce. This paper discusses the seismic response of the “Pietro Capuzi” school in Visso, a village located in the Marche region (Italy) that was severely damaged by the 2016–2017 Central Italy earthquake sequence. The school was a two-story masonry structure founded on simple enlargements of its load-bearing walls, partially embedded in the alluvial loose soils of the Nera river. The structure was monitored as a strategic building by the Italian Seismic Observatory of Structures (OSS), which provided acceleration records under both ambient noise and the three mainshocks of the seismic sequence. The evolution of the damage pattern following each one of the three mainshocks was provided by on-site survey integrated by OSS data. Data on the dynamic soil properties was available from the seismic microzonation study of the Visso village and proved useful in the development of a reliable geotechnical model of the subsoil. The equivalent frame (EF) approach was adopted to simulate the nonlinear response of the school building through both fixed-base and compliant-base models, to assess the likely influence of soil–structure interaction on the building performance. The ambient noise records allowed for an accurate calibration of the soil–structure model. The seismic response of the masonry building to the whole sequence of the three mainshocks was then simulated by nonlinear time history analyses by using the horizontal accelerations recorded at the underground floor as input motions. Numerical results are validated against the evidence on structural response in terms of both incremental damage and global shear force–displacement relationships. The comparisons are satisfactory, corroborating the reliability of the compliant-base approach as applied to the EF model and its computational efficiency to simulate the soil–foundation–structure interaction in the case of masonry buildings.
Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway
Titanium dioxide nanoparticles (TiO 2 NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics and electronics. However, TiO 2 NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans , to elucidate a potential pathway that can be involved in the persistent TiO 2 NP-immune cell interaction in vivo . Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO 2 NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue.
Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters
The recent detection of titanium dioxide nanoparticles ( n -TiO 2 ) in wastewaters raised concerns about its fate in the aquatic environment, which is related to its mobility through water bodies. Laboratory experiments of n -TiO 2 (particle size distribution: 10–65 nm) dispersed into both synthetic and real aqueous solutions under environmentally realistic concentrations (0.01, 0.1, 1 and 10 mg/l) were conducted over a time of 50 h to mimic duration of ecotoxicological tests. Agglomeration and sedimentation behaviour were measured under controlled conditions of salinity (0–35 ‰), ionic composition and strength, pH and dissolved organic carbon (DOC). Physico-chemical parameters and particle agglomeration in the dispersions were investigated by transmission electron microscopy, Brunauer, Emmett and Teller method and dynamic light scattering. A fluorescence spectrophotometer operating in the nephelometric mode was employed to obtain the sedimentation rates of n -TiO 2 . The overall results showed that agglomeration and sedimentation of n -TiO 2 were affected mainly by the initial concentration. Sedimentation data fitted satisfactorily ( R 2 in the range of 0.74–0.98; average R 2 : 0.90) with a first-order kinetic equation.The settling rate constant, k , increased by approx. one order of magnitude by moving from the lowest to the highest concentration, resulting very similar especially for all dispersions at 1( k  = 8 × 10 −6  s −1 ) and 10 mg/l ( k  = 2 × 10 −5  s −1 ) n -TiO 2 , regardless the ionic strength and composition of dispersions. The implication of these results on toxicological testing is discussed.
Contrasting Paternal and Maternal Genetic Histories of Thai and Lao Populations
The human demographic history of Mainland Southeast Asia (MSEA) has not been well studied; in particular, there have been very few sequence-based studies of variation in the male-specific portions of the Y chromosome (MSY). Here, we report new MSY sequences of ∼2.3 mB from 914 males and combine these with previous data for a total of 928 MSY sequences belonging to 59 populations from Thailand and Laos who speak languages belonging to three major Mainland Southeast Asia families: Austroasiatic, Tai-Kadai, and Sino-Tibetan. Among the 92 MSY haplogroups, two main MSY lineages (O1b1a1a* [O-M95*] and O2a* [O-M324*]) contribute substantially to the paternal genetic makeup of Thailand and Laos. We also analyze complete mitochondrial DNA genome sequences published previously from the same groups and find contrasting pattern of male and female genetic variation and demographic expansions, especially for the hill tribes, Mon, and some major Thai groups. In particular, we detect an effect of postmarital residence pattern on genetic diversity in patrilocal versus matrilocal groups. Additionally, both male and female demographic expansions were observed during the early Mesolithic (∼10 ka), with two later major male-specific expansions during the Neolithic period (∼4–5 ka) and the Bronze/Iron Age (∼2.0–2.5 ka). These two later expansions are characteristic of the modern Austroasiatic and Tai-Kadai groups, respectively, consistent with recent ancient DNA studies. We simulate MSY data based on three demographic models (continuous migration, demic diffusion, and cultural diffusion) of major Thai groups and find different results from mitochondrial DNA simulations, supporting contrasting male and female genetic histories.
Extrapolated long-term stability of titanium dioxide nanoparticles and multi-walled carbon nanotubes in artificial freshwater
Long-term stability of two engineered nanomaterials (ENMs), i.e., the inorganic n-TiO 2 and the organic Multi-Walled Carbon Nanotubes (MWCNTs), dispersed in artificial freshwater (5–100 mg l −1 ), was investigated from short-term settling velocity, particle size distribution, and surface charge. Hydrodynamic diameter and ζ-pot, calculated by means of dynamic and electrophoretic light scattering, respectively, qualitatively indicated a general ENMs dispersion instability over 1 h time. Sedimentation results, obtained by centrifugal separation analysis using the LUMiSizer over approx. 30 min analysis time, allowed to estimate the quantitative long-term (over 30 days) stability of ENMs. Settling data fitted satisfactorily with a first-order kinetic equation ( R 2 in the range of 0.918–0.989). The settling rate constant k values extrapolated at gravity spanned one order of magnitude, i.e., from 7.21 × 10 −5 to 4.12 × 10 −4  s −1 , and with the increasing of initial ENMs concentration. Sedimentation velocities were in good agreement with short- to long-term literature data (7.8 × 10 −2 –1.7 × 10 − 1 m day −1 vs. 5 × 10 −4 –3 × 10 −1  m day −1 for n-TiO 2 and 5.9 × 10 −2 –3.4 × 10 −1  m day −1 vs. 2 × 10 −1 –1.2 m day −1 for MWCNTs). n-TiO 2 showed a higher long-term stability with respect to MWCNTs (average: 1 × 10 −1  ± 3.4 × 10 −2  m day −1 instead of 1.7 × 10 −1  ± 1.1 × 10 −1  m day −1 , respectively).
New insights from Thailand into the maternal genetic history of Mainland Southeast Asia
Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA genomes from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the expansion of TK people through MSEA, although there is also some support for gene flow between central Thai and native Austroasiatic speaking Mon and Khmer. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups.