Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Brunen, Diede"
Sort by:
Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data
2017
Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the
IDH1
mutation and
ACACA
in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.
There are no robust methods for systematically identifying mutation-specific synthetic lethal (SL) partners in cancer. Here, the authors develop a computational algorithm that uses pan-cancer data to detect mutation-andcancer-specific SL partners and they validate a novel SL interaction between mutant IDH and loss of ACACA in leukaemia.
Journal Article
Mapping phospho-catalytic dependencies of therapy-resistant tumours reveals actionable vulnerabilities
by
Posch, Christian
,
Wang, Changjun
,
Peeper, Daniel S.
in
3-Phosphoinositide-Dependent Protein Kinases - genetics
,
631/1647/2067
,
631/553/2710
2019
Phosphorylation networks intimately regulate mechanisms of response to therapies. Mapping the phospho-catalytic profile of kinases in cells or tissues remains a challenge. Here, we introduce a practical high-throughput system to measure the enzymatic activity of kinases using biological peptide targets as phospho-sensors to reveal kinase dependencies in tumour biopsies and cell lines. A 228-peptide screen was developed to detect the activity of >60 kinases, including ABLs, AKTs, CDKs and MAPKs. Focusing on BRAF
V600E
tumours, we found mechanisms of intrinsic resistance to BRAF
V600E
-targeted therapy in colorectal cancer, including targetable parallel activation of PDPK1 and PRKCA. Furthermore, mapping the phospho-catalytic signatures of melanoma specimens identifies RPS6KB1 and PIM1 as emerging druggable vulnerabilities predictive of poor outcome in BRAF
V600E
patients. The results show that therapeutic resistance can be caused by the concerted upregulation of interdependent pathways. Our kinase activity-mapping system is a versatile strategy that innovates the exploration of actionable kinases for precision medicine.
Coppé and colleagues design a peptide phosphorylation-screening system that simultaneously measures the enzymatic activity of multiple kinases, identifying mechanisms of therapy resistance and druggable targets in colorectal cancer and melanoma.
Journal Article
Rapid Temporal Control of Foxp3 Protein Degradation by Sirtuin-1
by
Pals, Cornelieke E. G. M.
,
Coffer, Paul J.
,
van Loosdregt, Jorg
in
Acetylation
,
Antigens
,
Biodegradation
2011
Maintenance of Foxp3 protein expression in regulatory T cells (Treg) is crucial for a balanced immune response. We have previously demonstrated that Foxp3 protein stability can be regulated through acetylation, however the specific mechanisms underlying this observation remain unclear. Here we demonstrate that SIRT1 a member of the lysine deacetylase Sirtuin (SIRT) family, but not the related SIRTs 2-7, co-localize with Foxp3 in the nucleus. Ectopic expression of SIRT1, but not SIRTs 2-7 results in decreased Foxp3 acetylation, while conversely inhibition of endogenous SIRT activity increased Foxp3 acetylation. We show that SIRT1 inhibition decreases Foxp3 poly-ubiquitination, thereby increasing Foxp3 protein levels. Co-transfection of SIRT1 with Foxp3 results in increased Foxp3 proteasomal degradation, while SIRT inhibition increases FOXP3 transcriptional activity in human Treg. Taken together, these data support a central role for SIRT1 in the regulation of Foxp3 protein levels and thereby in regulation of Treg suppressive capacity. Pharmacological modulation of SIRT1 activity in Treg may therefore provide a novel therapeutic strategy for controlling immune responses.
Journal Article
An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread
2018
Plasma membrane integrity is essential for the viability of eukaryotic cells. In response to bacterial pore-forming toxins, disrupted regions of the membrane are rapidly repaired. However, the pathways that mediate plasma membrane repair are unclear. Here we show that autophagy-related (ATG) protein ATG16L1 and its binding partners ATG5 and ATG12 are required for plasma membrane repair through a pathway independent of macroautophagy. ATG16L1 is required for lysosome fusion with the plasma membrane and blebbing responses that promote membrane repair. ATG16L1 deficiency causes accumulation of cholesterol in lysosomes that contributes to defective membrane repair. Cell-to-cell spread by
Listeria monocytogenes
requires membrane damage by the bacterial toxin listeriolysin O, which is restricted by ATG16L1-dependent membrane repair. Cells harbouring the ATG16L1 T300A allele associated with inflammatory bowel disease were also found to accumulate cholesterol and be defective in repair, linking a common inflammatory disease to plasma membrane integrity. Thus, plasma membrane repair could be an important therapeutic target for the treatment of bacterial infections and inflammatory disorders.
Autophagy-related proteins ATG16L1, ATG5 and ATG12 are required for plasma membrane repair and help to restrict
Listeria monocytogenes
toxin-mediated cell-to-cell spread.
Journal Article
Exploiting synthetic lethality to improve cancer therapy
2017
The success of cancer therapies is hampered by a paucity of suitable drug targets and the rapid development of therapy resistance. The concept of synthetic lethality provides a potential solution to these constraints via the identification of novel therapeutic vulnerabilities, as exemplified in two recent studies.
Journal Article
A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAFV600E colorectal tumors
by
Muñoz, Denise P.
,
Wang, Changjun
,
Spassov, Danislav S.
in
Automation
,
Batch processing
,
Cancer therapies
2023
BRAF V600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF–MEK–EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAF V600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through β-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E 2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAF V600E CRC.
Journal Article
A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAF V600E colorectal tumors
by
Moasser, Mark M
,
Wang, Changjun
,
Wolf, Denise M
in
Colorectal Neoplasms - drug therapy
,
Colorectal Neoplasms - genetics
,
Colorectal Neoplasms - pathology
2023
BRAF
mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAF
CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through β-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E
loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAF
CRC.
Journal Article
A reversible SRC-relayed COX2-inflammatory program drives therapeutic resistance in BRAFV600E colorectal tumors
2022
BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF/MEK/EGFR co-targeting, we used a high throughput kinase activity mapping platform. We found that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR, and that coordinated targeting of SRC with BRAF ± EGFR increases efficacy in vitro and in vivo. SRC drives resistance to BRAF ± anti-EGFR therapy independently of ERK signaling by inducing transcriptional reprogramming via beta-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2-loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF+EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft (PDX) models. COX2 inhibition represents a novel drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.