Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
256 result(s) for "Brunner, Han"
Sort by:
De novo mutations in human genetic disease
Key Points Traditional genetic approaches such as linkage analysis and genome-wide association studies are focused on inherited genetic variation. Unbiased whole-genome and whole-exome sequencing now, for the first time, allows us to study the role of de novo mutations in health and disease. Each generation (per individual), approximately 74 de novo single-nucleotide variants (SNVs), three novel indels (small insertions or deletions) and 0.02 larger copy number variants (CNVs) arise in our genome. Risk factors that increase this de novo mutation rate include advanced paternal age at conception, a local genomic architecture that is full of segmental duplications, and genetic variation that is yet to be discovered. Exome sequencing has recently revealed disruptive de novo mutations in one or two genes as the major cause of many rare genetic syndromes, such as Kabuki, Schinzel–Giedion, Bohring–Opitz, Baraitser–Winter and Coffin–Siris syndromes. De novo mutations can also play a major part in common diseases such as intellectual disability, autism and schizophrenia, which are all associated with reduced fitness and have a large mutational target (that is, a large number of genes or non-genic elements that cause the disease when mutated). Predicting the pathogenicity of rare de novo missense mutations in novel genes is particularly challenging. However, it is greatly facilitated by the identification of recurrent mutations in patients with similar phenotypes, allowing detailed genotype–phenotype studies to be carried out. The identification of these mutations requires international collaboration, as the recurrent mutations will be rare for genetically heterogeneous diseases. Recent family-based genomic studies are providing a window into the incidence of new mutations in human genomes. This Review discusses our understanding of various types of de novo mutation, including the determinants and consequences of their occurrence rates, and the challenges both for their detection and for linking them to disease pathogenesis. New mutations have long been known to cause genetic disease, but their true contribution to the disease burden can only now be determined using family-based whole-genome or whole-exome sequencing approaches. In this Review we discuss recent findings suggesting that de novo mutations play a prominent part in rare and common forms of neurodevelopmental diseases, including intellectual disability, autism and schizophrenia. De novo mutations provide a mechanism by which early-onset reproductively lethal diseases remain frequent in the population. These mutations, although individually rare, may capture a significant part of the heritability for complex genetic diseases that is not detectable by genome-wide association studies.
Disease gene identification strategies for exome sequencing
Next generation sequencing can be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire protein-coding sequence, known as the exome, or even the entire human genome. Identifying the pathogenic mutation amongst thousands to millions of genomic variants is a major challenge, and novel variant prioritization strategies are required. The choice of these strategies depends on the availability of well-phenotyped patients and family members, the mode of inheritance, the severity of the disease and its population frequency. In this review, we discuss the current strategies for Mendelian disease gene identification by exome resequencing. We conclude that exome strategies are successful and identify new Mendelian disease genes in approximately 60% of the projects. Improvements in bioinformatics as well as in sequencing technology will likely increase the success rate even further. Exome sequencing is likely to become the most commonly used tool for Mendelian disease gene identification for the coming years.
De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome
Han Brunner and colleagues report the identification of de novo nonsense mutations in ASXL1 in individuals with Bohring-Opitz syndrome, which is characterized by intellectual disability, distinctive facial features and multiple congenital malformations. Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1 , which is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous.
A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology
Purpose: Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. Methods: We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene–based testing) and WES simultaneously. Results: Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Conclusion: Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin. Genet Med advance online publication 23 March 2017
Genome sequencing identifies major causes of severe intellectual disability
Whole-genome sequencing is used to identify genetic alterations in patients with severe intellectual disability for whom all other tests, including array and exome sequencing, returned negative results; de novo single-nucleotide and copy number variations affecting the coding region seem to be a major cause of this disorder. Gene variation in intellectual disability Intellectual disability has been shown to be linked to genetic variation but the majority of cases remain undiagnosed. This paper demonstrates the use of whole-genome sequencing to identify genetic alterations in patients with severe intellectual disability for whom all other tests, including array and exome sequencing, had returned negative results. Whole-genome sequencing of 50 patients with severe intellectual disability — and with no family history of the condition — resulted in a conclusive genetic diagnosis in 21 patients. The results suggest that de novo copy number variations and single-nucleotide variations affecting the coding region are a major cause of severe intellectual disability. Severe intellectual disability (ID) occurs in 0.5% of newborns and is thought to be largely genetic in origin 1 , 2 . The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. Microarray studies and, more recently, exome sequencing have demonstrated the importance of de novo copy number variations (CNVs) and single-nucleotide variations (SNVs) in ID, but the majority of cases remain undiagnosed 3 , 4 , 5 , 6 . Here we applied whole-genome sequencing to 50 patients with severe ID and their unaffected parents. All patients included had not received a molecular diagnosis after extensive genetic prescreening, including microarray-based CNV studies and exome sequencing. Notwithstanding this prescreening, 84 de novo SNVs affecting the coding region were identified, which showed a statistically significant enrichment of loss-of-function mutations as well as an enrichment for genes previously implicated in ID-related disorders. In addition, we identified eight de novo CNVs, including single-exon and intra-exonic deletions, as well as interchromosomal duplications. These CNVs affected known ID genes more frequently than expected. On the basis of diagnostic interpretation of all de novo variants, a conclusive genetic diagnosis was reached in 20 patients. Together with one compound heterozygous CNV causing disease in a recessive mode, this results in a diagnostic yield of 42% in this extensively studied cohort, and 62% as a cumulative estimate in an unselected cohort. These results suggest that de novo SNVs and CNVs affecting the coding region are a major cause of severe ID. Genome sequencing can be applied as a single genetic test to reliably identify and characterize the comprehensive spectrum of genetic variation, providing a genetic diagnosis in the majority of patients with severe ID.
Identification of rare de novo epigenetic variations in congenital disorders
Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained. We hypothesize that some cases of ND–CA are caused by aberrant DNA methylation leading to dysregulated genome function. Comparing DNA methylation profiles from 489 individuals with ND–CAs against 1534 controls, we identify epivariations as a frequent occurrence in the human genome. De novo epivariations are significantly enriched in cases, while RNAseq analysis shows that epivariations often have an impact on gene expression comparable to loss-of-function mutations. Additionally, we detect and replicate an enrichment of rare sequence mutations overlapping CTCF binding sites close to epivariations, providing a rationale for interpreting non-coding variation. We propose that epivariations contribute to the pathogenesis of some patients with unexplained ND–CAs, and as such likely have diagnostic relevance. A proportion of neurodevelopmental disorder and congenital anomaly cases remain without a genetic diagnosis. Here, the authors study aberrations of DNA methylation in such cases and find that epivariations might provide an explanation for some of these undiagnosed patients.
Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability
In this study, exome sequencing yielded a genetic diagnosis in 16% of patients who had previously been evaluated to rule out known causes of intellectual disability. Severe intellectual disability, which is also referred to as cognitive impairment or mental retardation, affects approximately 0.5% of the population in Western countries 1 , 2 and represents an important health burden. A clinical diagnosis of severe intellectual disability is generally based on an IQ of less than 50 and substantial limitations in activities of daily living. In early childhood, the diagnosis is based on substantial developmental delays, including motor, cognitive, and speech delays. Children with different nonsyndromic forms of intellectual disability are clinically indistinguishable. Intellectual disability can be caused by nongenetic factors, such as infections and perinatal asphyxia. In developed countries, . . .
A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency
Genotype-first combined with reverse phenotyping has shown to be a powerful tool in human genetics, especially in the era of next generation sequencing. This combines the identification of individuals with mutations in the same gene and linking these to consistent (endo)phenotypes to establish disease causality. We have performed a MIP (molecular inversion probe)-based targeted re-sequencing study in 3,275 individuals with intellectual disability (ID) to facilitate a genotype-first approach for 24 genes previously implicated in ID.Combining our data with data from a publicly available database, we confirmed 11 of these 24 genes to be relevant for ID. Amongst these, PHIP was shown to have an enrichment of disruptive mutations in the individuals with ID (5 out of 3,275). Through international collaboration, we identified a total of 23 individuals with PHIP mutations and elucidated the associated phenotype. Remarkably, all 23 individuals had developmental delay/ID and the majority were overweight or obese. Other features comprised behavioral problems (hyperactivity, aggression, features of autism and/or mood disorder) and dysmorphisms (full eyebrows and/or synophrys, upturned nose, large ears and tapering fingers). Interestingly, PHIP encodes two protein-isoforms, PHIP/DCAF14 and NDRP, each involved in neurodevelopmental processes, including E3 ubiquitination and neuronal differentiation. Detailed genotype-phenotype analysis points towards haploinsufficiency of PHIP/DCAF14, and not NDRP, as the underlying cause of the phenotype.Thus, we demonstrated the use of large scale re-sequencing by MIPs, followed by reverse phenotyping, as a constructive approach to verify candidate disease genes and identify novel syndromes, highlighted by PHIP haploinsufficiency causing an ID-overweight syndrome.
Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability
The authors analyzed the exome sequences of 2,104 intellectual disability patients and their parents. They identified 10 novel candidate genes associated with specific clinical phenotypes. To identify candidate genes for intellectual disability, we performed a meta-analysis on 2,637 de novo mutations, identified from the exomes of 2,104 patient–parent trios. Statistical analyses identified 10 new candidate ID genes: DLG4 , PPM1D , RAC1 , SMAD6 , SON , SOX5 , SYNCRIP , TCF20 , TLK2 and TRIP12 . In addition, we show that these genes are intolerant to nonsynonymous variation and that mutations in these genes are associated with specific clinical ID phenotypes.
Deficiency in Origin Licensing Proteins Impairs Cilia Formation: Implications for the Aetiology of Meier-Gorlin Syndrome
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.