Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Bruzzi, Giulia"
Sort by:
Fibrotic Idiopathic Interstitial Lung Disease: The Molecular and Cellular Key Players
Interstitial lung diseases (ILDs) that are known as diffuse parenchymal lung diseases (DPLDs) lead to the damage of alveolar epithelium and lung parenchyma, culminating in inflammation and widespread fibrosis. ILDs that account for more than 200 different pathologies can be divided into two groups: ILDs that have a known cause and those where the cause is unknown, classified as idiopathic interstitial pneumonia (IIP). IIPs include idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP) known also as bronchiolitis obliterans organizing pneumonia (BOOP), acute interstitial pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP). In this review, our aim is to describe the pathogenic mechanisms that lead to the onset and progression of the different IIPs, starting from IPF as the most studied, in order to find both the common and standalone molecular and cellular key players among them. Finally, a deeper molecular and cellular characterization of different interstitial lung diseases without a known cause would contribute to giving a more accurate diagnosis to the patients, which would translate to a more effective treatment decision.
Molecular Mechanisms and Physiological Changes behind Benign Tracheal and Subglottic Stenosis in Adults
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.
Quantitative CT-analysis of over aerated lung tissue and correlation with fibrosis extent in patients with idiopathic pulmonary fibrosis
Introduction The usual interstitial pneumonia (UIP) pattern, hallmark of idiopathic pulmonary fibrosis (IPF), may induce harmful local overdistension during mechanical ventilation given the juxtaposition of different tissue elasticities. Mechanotransduction, linking mechanical stress and strain to molecular pro-fibrotic pathways, likely contributes to fibrosis progression. Understanding the mechanical forces and aeration patterns in the lungs of IPF patients is crucial for unraveling potential mechanisms of disease progression. Quantitative lung computed tomography (CT) can accurately assess the air content of lung regions, thus informing on zonal distension. This study aims to investigate radiological evidence of lung over aeration in spontaneously breathing UIP patients compared to healthy controls during maximal inspiration. Methods Patients with IPF diagnosis referred to the Center for Rare Lung Diseases of the University Hospital of Modena (Italy) in the period 2020–2023 who underwent High Resolution Computed Tomography (HRCT) scans at residual volume (RV) and total lung capacity (TLC) using standardized protocols were retrospectively considered eligible. Patients with no signs of lung disease at HRCT performed with the same image acquisition protocol nor at pulmonary function test (PFTs) served as controls. Lung segmentation and quantitative analysis were performed using 3D Slicer software. Lung volumes were measured, and specific density thresholds defined over aerated and fibrotic regions. Comparison between over aerated lung at RV and TLC in the two groups and according to lung lobes was sought. Further, the correlation between aerated lung and the extent of fibrosis was assessed and compared at RV and TLC. Results IPF patients (N = 20) exhibited higher over aerated lung proportions than controls (N = 15) both at RV and TLC (4.5% vs. 0.7%, p < 0.0001 and 13.8% vs. 7%, p < 0.0001 respectively). Over aeration increased significantly from RV to TLC in both groups, with no intergroup difference (p = 0.67). Sensitivity analysis revealed significant variations in over aerated lung areas among lobes when passing from RV to TLC with no difference within lobes (p = 0.28). Correlation between over aeration and fibrosis extent was moderate at RV (r = 0.62, p < 0.0001) and weak at TLC (r = 0.27, p = 0.01), being the two significantly different at interpolation analysis (p < 0.0001). Conclusions This study provides the first evidence of radiological signs of lung over aeration in patients with UIP-pattern patients when passing from RV to TLC. These findings offer new insights into the complex interplay between mechanical forces, lung structure, and fibrosis and warrant larger and longitudinal investigations.
Nasal pressure swings as the measure of inspiratory effort in spontaneously breathing patients with de novo acute respiratory failure
Background Excessive inspiratory effort could translate into self-inflicted lung injury, thus worsening clinical outcomes of spontaneously breathing patients with acute respiratory failure (ARF). Although esophageal manometry is a reliable method to estimate the magnitude of inspiratory effort, procedural issues significantly limit its use in daily clinical practice. The aim of this study is to describe the correlation between esophageal pressure swings (Δ P es ) and nasal (Δ P nos ) as a potential measure of inspiratory effort in spontaneously breathing patients with de novo ARF. Methods From January 1, 2021, to September 1, 2021, 61 consecutive patients with ARF (83.6% related to COVID-19) admitted to the Respiratory Intensive Care Unit (RICU) of the University Hospital of Modena (Italy) and candidate to escalation of non-invasive respiratory support (NRS) were enrolled. Clinical features and tidal changes in esophageal and nasal pressure were recorded on admission and 24 h after starting NRS. Correlation between Δ P es and Δ P nos served as primary outcome. The effect of Δ P nos measurements on respiratory rate and Δ P es was also assessed. Results Δ P es and Δ P nos were strongly correlated at admission ( R 2  = 0.88, p  < 0.001) and 24 h apart ( R 2  = 0.94, p  < 0.001). The nasal plug insertion and the mouth closure required for Δ P nos measurement did not result in significant change of respiratory rate and Δ P es . The correlation between measures at 24 h remained significant even after splitting the study population according to the type of NRS (high-flow nasal cannulas [ R 2  = 0.79, p  < 0.001] or non-invasive ventilation [ R 2  = 0.95, p  < 0.001]). Conclusions In a cohort of patients with ARF, nasal pressure swings did not alter respiratory mechanics in the short term and were highly correlated with esophageal pressure swings during spontaneous tidal breathing. Δ P nos might warrant further investigation as a measure of inspiratory effort in patients with ARF. Trial registration : NCT03826797 . Registered October 2016.
Predicting and Treating Pulmonary Fibrosis with Proteomic Biomarker Investigations
Idiopathic pulmonary fibrosis (IPF) is a chronic, rare, and fatal disease that is the consequence of aberrant remodeling and defective repair mechanisms within the lung, culminating in the loss of alveolar integrity. Although significant progress has been made in understanding the pathogenesis, it would be crucial to identify biomarkers for diagnosis, prognosis, and prediction of therapy response to improve the management of this challenging and debilitating disease. Omics technologies have profoundly advanced the understanding of disease mechanisms, presenting considerable potential for the identification of clinically relevant biomarkers. To date, specific molecular pathways have been implicated in the onset and progression of idiopathic pulmonary fibrosis, including abnormal wounding, fibroblast proliferation, inflammation, deposition of the extracellular matrix, oxidative stress, endoplasmic reticulum stress, and the coagulation system. This review highlights the role of proteomics in identifying key biomarkers for IPF, focusing on their clinical relevance, including diagnosis, prognosis, disease progression, and the identification of new therapeutic options, in light of the most recent technological advancements in mass spectrometry.
Stress–strain curve and elastic behavior of the fibrotic lung with usual interstitial pneumonia pattern during protective mechanical ventilation
Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress–strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO 2 /FiO 2 ratio) during a PEEP trial performed within 24 h from intubation. Patient’s stress–strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8–33.2] cmH 2 O versus 11.4 [10.3–14.6] cmH 2 O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress–strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.
Dissecting the Role of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis: Cause or Solution
Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic interstitial pneumonias, characterized by chronic and progressive fibrosis subverting the lung’s architecture, pulmonary functional decline, progressive respiratory failure, and high mortality (median survival 3 years after diagnosis). Among the mechanisms associated with disease onset and progression, it has been hypothesized that IPF lungs might be affected either by a regenerative deficit of the alveolar epithelium or by a dysregulation of repair mechanisms in response to alveolar and vascular damage. This latter might be related to the progressive dysfunction and exhaustion of the resident stem cells together with a process of cellular and tissue senescence. The role of endogenous mesenchymal stromal/stem cells (MSCs) resident in the lung in the homeostasis of these mechanisms is still a matter of debate. Although endogenous MSCs may play a critical role in lung repair, they are also involved in cellular senescence and tissue ageing processes with loss of lung regenerative potential. In addition, MSCs have immunomodulatory properties and can secrete anti-fibrotic factors. Thus, MSCs obtained from other sources administered systemically or directly into the lung have been investigated for lung epithelial repair and have been explored as a potential therapy for the treatment of lung diseases including IPF. Given these multiple potential roles of MSCs, this review aims both at elucidating the role of resident lung MSCs in IPF pathogenesis and the role of administered MSCs from other sources for potential IPF therapies.
Expression of HOXB7 in the Lung of Patients with Idiopathic Pulmonary Fibrosis: A Proof-of-Concept Study
Background: The molecular pathways involved in the onset and progression of idiopathic pulmonary fibrosis (IPF) still need to be fully clarified as some are shared with lung cancer development. HOXB7, a member of the homeobox (Hox) gene family, has been found involved in various cancers. Methods: Immunohistochemical (IHC) analysis was run on lung tissue samples from surgical lung biopsy (SLB) of 19 patients with IPF, retrospectively selected from the IPF database of the University Hospital of Modena. HOXB7 expression was analyzed and compared with that of five patients with no evidence of pulmonary fibrosis as controls. Results: The semi-quantitative analysis of IHC showed that HOXB7 protein expression was higher in IPF patients compared to controls (difference between means = 6.2 ± 2.37, p = 0.0157). Further, HOXB7 expression was higher in IPF patients with a higher extent of fibrosis (50–75%)—measured with high-resolution computer tomography—compared to those with a lower extent (0–25%) (difference between means = 25.74 ± 6.72, p = 0.004). Conclusions: The expression of HOXB7 is higher in the lung of IPF patients compared to controls, and was represented in different cellular compartments within the lung niche. Further investigations are needed to clarify its role in the pathogenesis and progression of IPF.
Endobronchial valve positioning for alveolar-pleural fistula following ICU management complicating COVID-19 pneumonia
Background The main clinical consequences of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection are pneumonia and respiratory failure even requiring mechanical ventilation. In this context, the lung parenchyma is highly prone to ventilator-related injury, with pneumothorax and persistent air leak as the most serious adverse events. So far, endobronchial valve (EBV) positioning has proved efficacious in treating air leaks with a high success rate. Case presentation We report, for the first time, two cases of patients affected by SARS-CoV-2-related pneumonia complicated with bacterial super-infection, experiencing pneumothorax and persistent air leaks after invasive mechanical ventilation. Despite the severity of respiratory failure both patients underwent rigid interventional bronchoscopy and were successfully treated through EBV positioning. Conclusions Persistent air leaks may result from lung tissue damage due to a complex interaction between inflammation and ventilator-related injury (VILI), especially in the advanced stages of ARDS. EBV positioning seems to be a feasible and effective minimally invasive therapeutic option for treating this subset of patients.