Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
257 result(s) for "Buckley, Christopher L."
Sort by:
Learning action-oriented models through active inference
Converging theories suggest that organisms learn and exploit probabilistic models of their environment. However, it remains unclear how such models can be learned in practice. The open-ended complexity of natural environments means that it is generally infeasible for organisms to model their environment comprehensively. Alternatively, action-oriented models attempt to encode a parsimonious representation of adaptive agent-environment interactions. One approach to learning action-oriented models is to learn online in the presence of goal-directed behaviours. This constrains an agent to behaviourally relevant trajectories, reducing the diversity of the data a model need account for. Unfortunately, this approach can cause models to prematurely converge to sub-optimal solutions, through a process we refer to as a bad-bootstrap. Here, we exploit the normative framework of active inference to show that efficient action-oriented models can be learned by balancing goal-oriented and epistemic (information-seeking) behaviours in a principled manner. We illustrate our approach using a simple agent-based model of bacterial chemotaxis. We first demonstrate that learning via goal-directed behaviour indeed constrains models to behaviorally relevant aspects of the environment, but that this approach is prone to sub-optimal convergence. We then demonstrate that epistemic behaviours facilitate the construction of accurate and comprehensive models, but that these models are not tailored to any specific behavioural niche and are therefore less efficient in their use of data. Finally, we show that active inference agents learn models that are parsimonious, tailored to action, and which avoid bad bootstraps and sub-optimal convergence. Critically, our results indicate that models learned through active inference can support adaptive behaviour in spite of, and indeed because of, their departure from veridical representations of the environment. Our approach provides a principled method for learning adaptive models from limited interactions with an environment, highlighting a route to sample efficient learning algorithms.
PID Control as a Process of Active Inference with Linear Generative Models
In the past few decades, probabilistic interpretations of brain functions have become widespread in cognitive science and neuroscience. In particular, the free energy principle and active inference are increasingly popular theories of cognitive functions that claim to offer a unified understanding of life and cognition within a general mathematical framework derived from information and control theory, and statistical mechanics. However, we argue that if the active inference proposal is to be taken as a general process theory for biological systems, it is necessary to understand how it relates to existing control theoretical approaches routinely used to study and explain biological systems. For example, recently, PID (Proportional-Integral-Derivative) control has been shown to be implemented in simple molecular systems and is becoming a popular mechanistic explanation of behaviours such as chemotaxis in bacteria and amoebae, and robust adaptation in biochemical networks. In this work, we will show how PID controllers can fit a more general theory of life and cognition under the principle of (variational) free energy minimisation when using approximate linear generative models of the world. This more general interpretation also provides a new perspective on traditional problems of PID controllers such as parameter tuning as well as the need to balance performances and robustness conditions of a controller. Specifically, we then show how these problems can be understood in terms of the optimisation of the precisions (inverse variances) modulating different prediction errors in the free energy functional.
Hybrid predictive coding: Inferring, fast and slow
Predictive coding is an influential model of cortical neural activity. It proposes that perceptual beliefs are furnished by sequentially minimising “prediction errors”—the differences between predicted and observed data. Implicit in this proposal is the idea that successful perception requires multiple cycles of neural activity. This is at odds with evidence that several aspects of visual perception—including complex forms of object recognition—arise from an initial “feedforward sweep” that occurs on fast timescales which preclude substantial recurrent activity. Here, we propose that the feedforward sweep can be understood as performing amortized inference (applying a learned function that maps directly from data to beliefs) and recurrent processing can be understood as performing iterative inference (sequentially updating neural activity in order to improve the accuracy of beliefs). We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner by describing both in terms of a dual optimization of a single objective function. We show that the resulting scheme can be implemented in a biologically plausible neural architecture that approximates Bayesian inference utilising local Hebbian update rules. We demonstrate that our hybrid predictive coding model combines the benefits of both amortized and iterative inference—obtaining rapid and computationally cheap perceptual inference for familiar data while maintaining the context-sensitivity, precision, and sample efficiency of iterative inference schemes. Moreover, we show how our model is inherently sensitive to its uncertainty and adaptively balances iterative and amortized inference to obtain accurate beliefs using minimum computational expense. Hybrid predictive coding offers a new perspective on the functional relevance of the feedforward and recurrent activity observed during visual perception and offers novel insights into distinct aspects of visual phenomenology.
A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.
Generative models as parsimonious descriptions of sensorimotor loops
The Bayesian brain hypothesis, predictive processing, and variational free energy minimisation are typically used to describe perceptual processes based on accurate generative models of the world. However, generative models need not be veridical representations of the environment. We suggest that they can (and should) be used to describe sensorimotor relationships relevant for behaviour rather than precise accounts of the world.
A behavioral and modeling study of control algorithms underlying the translational optomotor response in larval zebrafish with implications for neural circuit function
The optomotor response (OMR) is central to the locomotory behavior in diverse animal species including insects, fish and mammals. Furthermore, the study of the OMR in larval zebrafish has become a key model system for investigating the neural basis of sensorimotor control. However, a comprehensive understanding of the underlying control algorithms is still outstanding. In fish it is often assumed that the OMR, by reducing average optic flow across the retina, serves to stabilize position with respect to the ground. Yet the degree to which this is achieved, and how it could emerge from the intermittent burst dynamics of larval zebrafish swimming, are unclear. Here, we combine detailed computational modeling with a new approach to free-swimming experiments in which we control the amount of visual feedback produced by a given motor effort by varying the height of the larva above a moving grid stimulus. We develop an account of underlying feedback control mechanisms that describes both the bout initiation process and the control of swim speed during bouts. We observe that the degree to which fish stabilize their position is only partial and height-dependent, raising questions about its function. We find the relative speed profile during bouts follows a fixed temporal pattern independent of absolute bout speed, suggesting that bout speed and bout termination are not separately controlled. We also find that the reverse optic flow, experienced when the fish is swimming faster than the stimulus, plays a minimal role in control of the OMR despite carrying most of the sensory information about self-movement. These results shed new light on the underlying dynamics of the OMR in larval zebrafish and will be crucial for future work aimed at identifying the neural basis of this behavior.
Natural Induction: Spontaneous Adaptive Organisation without Natural Selection
Evolution by natural selection is believed to be the only possible source of spontaneous adaptive organisation in the natural world. This places strict limits on the kinds of systems that can exhibit adaptation spontaneously, i.e., without design. Physical systems can show some properties relevant to adaptation without natural selection or design. (1) The relaxation, or local energy minimisation, of a physical system constitutes a natural form of optimisation insomuch as it finds locally optimal solutions to the frustrated forces acting on it or between its components. (2) When internal structure ‘gives way’ or accommodates a pattern of forcing on a system, this constitutes learning insomuch, as it can store, recall, and generalise past configurations. Both these effects are quite natural and general, but in themselves insufficient to constitute non-trivial adaptation. However, here we show that the recurrent interaction of physical optimisation and physical learning together results in significant spontaneous adaptive organisation. We call this adaptation by natural induction. The effect occurs in dynamical systems described by a network of viscoelastic connections subject to occasional disturbances. When the internal structure of such a system accommodates slowly across many disturbances and relaxations, it spontaneously learns to preferentially visit solutions of increasingly greater quality (exceptionally low energy). We show that adaptation by natural induction thus produces network organisations that improve problem-solving competency with experience (without supervised training or system-level reward). We note that the conditions for adaptation by natural induction, and its adaptive competency, are different from those of natural selection. We therefore suggest that natural selection is not the only possible source of spontaneous adaptive organisation in the natural world.
Recurrent, nonequilibrium systems and the Markov blanket assumption
Markov blankets – statistical independences between system and environment – have become popular to describe the boundaries of living systems under Bayesian views of cognition. The intuition behind Markov blankets originates from considering acyclic, atemporal networks. In contrast, living systems display recurrent, nonequilibrium interactions that generate pervasive couplings between system and environment, making Markov blankets highly unusual and restricted to particular cases.
Competition-Based Model of Pheromone Component Ratio Detection in the Moth
For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy.
Multi-Neuronal Refractory Period Adapts Centrally Generated Behaviour to Reward
Oscillating neuronal circuits, known as central pattern generators (CPGs), are responsible for generating rhythmic behaviours such as walking, breathing and chewing. The CPG model alone however does not account for the ability of animals to adapt their future behaviour to changes in the sensory environment that signal reward. Here, using multi-electrode array (MEA) recording in an established experimental model of centrally generated rhythmic behaviour we show that the feeding CPG of Lymnaea stagnalis is itself associated with another, and hitherto unidentified, oscillating neuronal population. This extra-CPG oscillator is characterised by high population-wide activity alternating with population-wide quiescence. During the quiescent periods the CPG is refractory to activation by food-associated stimuli. Furthermore, the duration of the refractory period predicts the timing of the next activation of the CPG, which may be minutes into the future. Rewarding food stimuli and dopamine accelerate the frequency of the extra-CPG oscillator and reduce the duration of its quiescent periods. These findings indicate that dopamine adapts future feeding behaviour to the availability of food by significantly reducing the refractory period of the brain's feeding circuitry.