Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Budniak, Zbigniew"
Sort by:
Reliability Testing of Wind Farm Devices Based on the Mean Time between Failures (MTBF)
Among the most valuable types of renewable energy available today is wind energy. The reliability of WF systems must be regularly evaluated at every stage of their “life,” from design to operation, if a wind farm energy system is to be effective and function damage-free. Three key goals are presented in the article. The theory of fundamental quantities in reliability and maintenance analysis should be derived and explained first. Second, as a consequence of maintainability, theoretical correlations between reliability and mean time between failures (MTBF) are provided. The three-state theory of the WF procedure for operation presented in the research serves as the foundation for the analytical analysis of WF reliability. The time between failures is investigated as a function of maintainability, and the dependability of the WF under examination is assessed as a function of service life. The WF owner can make the best decisions to renew the WF and increase its reliability, energy, financial efficiency, etc. by being aware of the existing reliability of the WF system in use.
Innovative Solutions in the Design of Microfinishing Attachments for Surface Finishing with Abrasive Films
The study introduces new technologies of microfinishing, which are primarily aimed at cylindrical surfaces but with machining effectiveness, precision, and surface longevity. In the newly proposed dual-zone microfinishing method, symmetrical abrasive film feeding systems are adapted with a lever mechanism and a pivoting pressing assembly to simultaneously conduct processing in two zones. With such a design, uniform force distribution is ensured, while mechanical deformation is reduced to raise the utility of the abrasive film and lower scraps for better economic performance. Also, the application of microfinishing operations combined with carbon layer deposition using graphite-impregnated abrasive films is introduced as a novel method. This process combines surface refinement and the forming of wear-resistant carbon coatings into one single operation, resulting in increased wear resistance and reduced forces of friction. Further stabilization of the conditions for microfinishing is achieved by immersing the processing zone in a fluid medium due to increased lubrication, improvement in heat dissipation, and the optimization of surface properties. It is particularly suitable for high-precision applications and a maintenance-free environment such as military, vacuum, and low-temperature systems. The experimental results show the effectiveness of the proposed methodologies, underscoring their ability to create remarkably smooth surfaces and very robust carbon textures simultaneously.
Reliability Testing of Wind Farm Devices Based on the Mean Time to Failures
Nowadays, one of the main sources of renewable energy is wind energy; therefore, a wind farm’s electricity system must be effective. As a result, wind farm (WF) equipment must continuously operate without failure or damage. To achieve this, it is necessary to regularly monitor and assess the reliability of WF systems at every point of their “life”, including design, implementation, and continued use. Three key goals are presented in the article. First, a theory of fundamental theoretical quantities that can be used in reliability and maintenance analysis is presented. The second is to put forth a theoretical reliability link between mean time to failure and WF system fitness probability (Mean Time to Failures (MTTF—Mean time between failures. MTTF = t1 + t2 + … + tn/m, where: m—the number of all failures at time T, ti—i—ty time to failure)). The third goal is to analyze the time to failure as a function of service life and to assess the dependability of the WF under consideration as a function of service life. The three-state model of the WF operation process presented in the research serves as the foundation for the analytical analysis of WF reliability. The probability of fitness (Po(t)) of the WF system and the mean time to failure were calculated based on the analytical quantities denoting this model (MTTF). The WF owner can make the best choice regarding the proper WF renewal actions with the help of knowledge of these current dependability values for an in-service WF system.
Modelling and Analysis of the Positioning Accuracy in the Loading Systems of Mobile Cranes
In this work, the authors analyse the influence of the order and range of sequential movements of a crane’s working members on the accuracy of the final cargo positioning. The analysis was conducted on the basis of a specially developed method in which the authors proposed the introduction of a geometrical indicator of positioning the load in the intermediate positions (after completing each movement sequence) and in the target position, depending on the adopted control strategy and the accuracy of kinematic input of the working mechanisms (powered mechanisms). A mathematical model was presented to enable the accuracy of unidirectional positioning of the crane’s working members when conducting sequential movements controlled through the rotation of the crane column, inner and outer boom, and retractable stages of the six-section telescopic boom. Sample results of the numerical simulations showing the influence of the assumed kinematic inputs of the crane members on the accuracy of unidirectional angular and linear positioning and, consequently, on the accuracy of the final positioning of the transported cargo, were presented. Moreover, an indicator of the cargo positioning accuracy dependent on the location of an operator or a video camera and the trajectory of the cargo was developed, allowing the formulation of application conclusions.
Worm Gear Drives with Improved Kinematic Accuracy
This paper presents the fundamentals of the design and applications of new worm gear drive solutions, which enable the minimisation of backlash and are characterised by higher kinematic accuracy. Different types of worm surfaces are briefly outlined. Technological problems concerning the principles of achieving a high degree of precision in machining are also described. Special attention is paid to the shaping of conical helical surfaces. Increasing the manufacturing precision of drive components allows one to achieve both lower backlash values and lower levels of its dispersion. However, this does not ensure that backlash can be eliminated, with its value being kept low during longer periods of operation. This is important in positioning systems and during recurrent operations. Various design solutions for drives in which it is possible to reduce backlash are presented. Results of experiments of a worm gear drive with a worm axially adaptive only locally, in its central section, are presented. In this solution, it is possible to reduce backlash by introducing adjustment settings without disassembling the drive. An important scientific problem concerned defining the principles of achieving a compromise between the effectiveness of reducing backlash and the required load capacity of the drive. In this paper it has been shown that in worm gear drives with a locally axially adaptive worm, as well as with a worm wheel with a deformable rim, it is possible to achieve significant reduction of backlash. In high precision drives—for example, those with an average backlash value of <15 micrometers—this can enable more than a two-fold reduction of the average backlash value and more than a three-fold decrease of the standard deviation of local backlash values.
Modelling And Numerical Analysis Of Assembly System
The present articles covers a concept of the creation and testing of assembly systems with the use of modern CAD and CAE systems on the example of an assembly system designed for joining parts with circular surfaces that are fitted with positive clearance. The numerical investigations were based on the constructed spatial skeleton pattern of the system. The purpose of the simulation tests was to determine the impact of the measurement and angular inaccuracies of all the elements of the assembly system as well as the inaccuracy of the positioning of the robot’s drives on the positioning accuracy of the parts joined taking into consideration the conditions of assembly in automatic assembly.
Innovative design of non-backlash worm gear drives
In this paper the authors present the newest designs of worm gear drives which allow to adjust or decrease the amount of backlash. This effect is achieved with innovative designs of worms and worm wheels. The designed drives are aimed to find their application in systems for precise positioning of measurement assemblies, precise drives of technological instrumentation, as well as in micro-mechanisms. Many of the presented designs allow backlash adjustment without removing of the worm gear drive. The described solutions present a good alternative to conventional high-gear precision drives as well as harmonic drives used at speeds typical to positioning mechanisms. This paper presents the results of numerical research performed with the MES finite element method and also the results of experimental research on the innovative worm gear drive with an axially adaptive worm. The results analysis has led to the conclusion, that the described solutions allow reduction of backlash to 5–15%, and even greater reduction of its standard deviation — that is 5–10% — of their initial values.
Interactive Systems for Designing Machine Elements and Assemblies
The article describes the development of fundamentals of machine elements and assemblies design processes automation using artificial intelligence, and descriptions of structural elements’ features in a natural language. In the proposed interactive automated design systems, computational artificial intelligence methods allow communication by speech and natural language, resulting in analyses of design engineer’s messages, analyses of constructions, encoding and assessments of constructions, CAD system controlling and visualizations. The system is equipped with several adaptive intelligent layers for human biometric identification, recognition of speech and handwriting, recognition of words, analyses and recognition of messages, enabling interpretation of messages, and assessments of human reactions. The article proposes a concept of intelligent processing for analysis of descriptions of machine elements’ structural features in a natural language. It also presents the developed methodology for similarity analysis between structural features of designed machine elements and corresponding antipatterns allowing normalization of parameters of the analysed structural solutions.