Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Buendia, Orlando"
Sort by:
The Similarities and Differences between the Effects of Testosterone and DHEA on the Innate and Adaptive Immune Response
by
Legorreta-Herrera, Martha
,
Buendía-González, Fidel Orlando
in
Adaptive Immunity
,
Androgen receptors
,
Androgens
2022
Androgens are steroids that modulate various processes in the body, ranging from reproduction, metabolism, and even immune response. The main androgens are testosterone, dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). These steroids modulate the development and function of immune response cells. Androgens are generally attributed to immunosuppressive effects; however, this is not always the case. Variations in the concentrations of these hormones induce differences in the innate, humoral, and cell-mediated immune response, which is concentration dependent. The androgens at the highest concentration in the organism that bind to the androgen receptor (AR) are DHEA and testosterone. Therefore, in this work, we review the effects of DHEA and testosterone on the immune response. The main findings of this review are that DHEA and testosterone induce similar but also opposite effects on the immune response. Both steroids promote the activation of regulatory T cells, which suppresses the Th17-type response. However, while testosterone suppresses the inflammatory response, DHEA promotes it, and this modulation is important for understanding the involvement of androgens in infectious (bacterial, viral and parasitic) and autoimmune diseases, as well as in the sexual dimorphism that occurs in these diseases.
Journal Article
Is it possible to implement a rare disease case-finding tool in primary care? A UK-based pilot study
2022
Introduction
This study implemented MendelScan, a primary care rare disease case-finding tool, into a UK National Health Service population. Rare disease diagnosis is challenging due to disease complexity and low physician awareness. The 2021 UK Rare Diseases Framework highlights as a key priority the need for faster diagnosis to improve clinical outcomes.
Methods and results
A UK primary care locality with 68,705 patients was examined. MendelScan encodes diagnostic/screening criteria for multiple rare diseases, mapping clinical terms to appropriate SNOMED CT codes (UK primary care standardised clinical terminology) to create digital algorithms. These algorithms were applied to a pseudo-anonymised structured data extract of the electronic health records (EHR) in this locality to \"flag\" at-risk patients who may require further evaluation. All flagged patients then underwent internal clinical review (a doctor reviewing each EHR flagged by the algorithm, removing all cases with a clear diagnosis/diagnoses that explains the clinical features that led to the patient being flagged); for those that passed this review, a report was returned to their GP. 55 of 76 disease criteria flagged at least one patient. 227 (0.33%) of the total 68,705 of EHR were flagged; 18 EHR were already diagnosed with the disease (the highlighted EHR had a diagnostic code for the same RD it was screened for, e.g. Behcet’s disease algorithm identifying an EHR with a SNOMED CT code Behcet's disease). 75/227 (33%) EHR passed our internal review. Thirty-six reports were returned to the GP. Feedback was available for 28/36 of the reports sent. GP categorised nine reports as \"Reasonable possible diagnosis\" (advance for investigation), six reports as \"diagnosis has already been excluded\", ten reports as \"patient has a clear alternative aetiology\", and three reports as \"Other\" (patient left study locality, unable to re-identify accurately). All the 9 cases considered as \"reasonable possible diagnosis\" had further evaluation.
Conclusions
This pilot demonstrates that implementing such a tool is feasible at a population level. The case-finding tool identified credible cases which were subsequently referred for further investigation. Future work includes performance-based validation studies of diagnostic algorithms and the scalability of the tool.
Journal Article
DHEA Induces Sex-Associated Differential Patterns in Cytokine and Antibody Levels in Mice Infected with Plasmodium berghei ANKA
by
Cervantes-Candelas, Luis Antonio
,
Legorreta-Herrera, Martha
,
Aguilar-Castro, Jesús
in
Cytokines
,
Females
,
Hemoglobin
2023
Malaria is the most lethal parasitic disease worldwide; the severity of symptoms and mortality are higher in men than in women, exhibiting an evident sexual dimorphism in the immune response; therefore, the contribution of 17β-estradiol and testosterone to this phenomenon has been studied. Both hormones differentially affect several aspects of innate and adaptive immunity. Dehydroepiandrosterone (DHEA) is the precursor of both hormones and is the sexual steroid in higher concentrations in humans, with immunomodulatory properties in different parasitic diseases; however, the involvement of DHEA in this sexual dimorphism has not been studied. In the case of malaria, the only information is that higher levels of DHEA are associated with reduced Plasmodium falciparum parasitemia. Therefore, this work aims to analyze the DHEA contribution to the sexual dimorphism of the immune response in malaria. We assessed the effect of modifying the concentration of DHEA on parasitemia, the number of immune cells in the spleen, cytokines, and antibody levels in plasma of CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). DHEA differentially affected the immune response in males and females: it decreased IFN-γ, IL-2 and IL-4 concentrations only in females, whereas in gonadectomized males, it increased IgG2a and IgG3 antibodies. The results presented here show that DHEA modulates the immune response against Plasmodium differently in each sex, which helps to explain the sexual dimorphism present in malaria.
Journal Article
Testosterone induces sexual dimorphism during infection with Plasmodium berghei ANKA
by
Cervantes-Candelas, Luis Antonio
,
Legorreta-Herrera, Martha
,
Aguilar-Castro, Jesús
in
Blood parasites
,
Body temperature
,
CD3 antigen
2022
Malaria is the most lethal parasitic disease worldwide; men exhibit higher mortality and more severe symptomatology than women; however, in most studies of immune response in malaria, sex is not considered a variable. Sex hormones 17β-oestradiol and testosterone are responsible for the main physiological differences between sexes. When interacting with their receptors on different immune cells, they modify the expression of genes that modulate cell proliferation, differentiation, and synthesis of cytokines. The immunosuppressive activity of testosterone is well accepted; however, its participation in the sexual dimorphism of the immune response to malaria has not been studied. In this work, we analysed whether altering the concentration of testosterone, through increasing the concentration of this hormone for exogenous administration for three weeks, or gonadectomy before infection with Plasmodium berghei ANKA affects different cells of the immune response necessary for parasite clearance. We also assessed the concentration of pro-and anti-inflammatory cytokines in male and female CBA/Ca mice infected or not with the parasite. Our results show that testosterone changes affect females more than males, resulting in sex-associated patterns. Testosterone administration increased parasitaemia in intact males while reducing it in intact females leading to a dimorphic pattern. In addition, gonadectomy increased parasitaemia in both sexes. Moreover, testosterone administration prevented both weight loss caused by the infection in females and hypothermia in gonadectomized mice of both sexes. Boosting testosterone concentration increased CD3 + and CD8 + populations but decreased the B220 + cells exclusively in females. Additionally, testosterone reduced IFN-γ concentration and increased IL-6 levels only in females, while in males, testosterone increased the number of NK cells. Finally, gonadectomy decreased TNF-α concentration in both sexes. Our results demonstrate that testosterone induces different patterns depending on sex and testosterone concentration. The results of this work contribute to understanding the impact of modifying testosterone concentration on the immune response specific against Plasmodium and the participation of this hormone in sexual dimorphism in malaria.
Journal Article
Immunomodulatory effects of testosterone and letrozole during Plasmodium berghei ANKA infection
by
Salazar-Castañón, Víctor Hugo
,
Cervantes-Candelas, Luis Antonio
,
Legorreta-Herrera, Martha
in
androgen
,
Androgens
,
Anemia
2023
Malaria is one of the leading health problems globally. Plasmodium infection causes pronounced sexual dimorphism, and the lethality and severity are more remarkable in males than in females. To study the role of testosterone in the susceptibility and mortality of males in malaria, it is common to increase its concentration. However, this strategy does not consider the enzyme CYP19A1 aromatase, which can transform it into oestrogens.
To avoid the interference of oestrogens, we inhibited in vivo CYP19A1 aromatase with letrozole and increased the testosterone level by exogen administration before infection with Plasmodium berghei ANKA. We measured the impact on free testosterone, 17β-oestradiol and dehydroepiandrosterone levels in plasma; additionally, we evaluated parasitaemia, body temperature, body mass, glucose levels and haemoglobin concentration. Furthermore, we evaluated the effects of testosterone on the immune response; we quantified the CD3+/CD4+, CD3+/CD8+, CD19+, Mac-3+ and NK cells in the spleen and the plasma concentrations of the cytokines IL-2, IL-4, IL-6, IFN-, IL-10, TNF-α and IL-17A. Finally, we quantified the levels of antibodies.
We found that mice treated with the combination of letrozole and testosterone and infected with Plasmodium berghei ANKA had increased concentrations of free testosterone and DHEA but decreased levels of 17β-oestradiol. As a result, parasitaemia increased, leading to severe anaemia. Interestingly, testosterone increased temperature and decreased glucose concentration as a possible testosterone-mediated regulatory mechanism. The severity of symptomatology was related to critical immunomodulatory effects generated by free testosterone; it selectively increased CD3+CD8+ T and CD19+ cells but decreased Mac-3+. Remarkably, it reduced IL-17A concentration and increased IL-4 and TNF-α. Finally, it increased IgG1 levels and the IgG1/IgG2a ratio. In conclusion, free testosterone plays an essential role in pathogenesis in male mice by increasing CD8+ and decreasing Mac3+ cells and mainly reducing IL-17A levels, which is critical in the development of anaemia. Our results are important for understanding the mechanisms that regulate the exacerbated inflammatory response in infectious diseases and would be useful for the future development of alternative therapies to reduce the mortality generated by inflammatory processes.
Journal Article
Tamoxifen Suppresses the Immune Response to Plasmodium berghei ANKA and Exacerbates Symptomatology
by
Morales-Montor, Jorge
,
Legorreta-Herrera, Martha
,
Cervantes-Candelas, Luis
in
Anemia
,
blood serum
,
Body temperature
2021
Malaria is the most lethal parasitic disease in the world. Mortality and severity in symptoms are higher in men than women, suggesting that oestrogens, which are in higher concentration in females than in males, may regulate the immune response against malaria. Tamoxifen, a selective oestrogen receptor modulator used in breast cancer treatment due to its antagonistic effect on oestrogen receptors α and β, is also studied because of its potential therapeutic use for several parasitic diseases. However, most studies, including one in malaria, have not addressed the immunomodulatory role of tamoxifen. In this work, we evaluated the effect of tamoxifen on the immune response of CBA/Ca mice against Plasmodium berghei ANKA. This study showed for the first time that tamoxifen increased parasite load, aggravated symptoms by decreasing body temperature and body weight, and worsened anaemia. Additionally, tamoxifen significantly increased the splenic index and the percentages of CD4+ and NK+ cells on day eight post-infection. By contrast, tamoxifen decreased both CD8+ and B220+ populations in the spleen and decreased the serum levels of IL-2, IL-6, and IL-17. Our findings support the notion that tamoxifen is a potent immunomodulator in malaria-infected mice and suggest caution when administering it to malaria-infected women with breast cancer.
Journal Article
Gonadal Steroids Negatively Modulate Oxidative Stress in CBA/Ca Female Mice Infected with P. berghei ANKA
by
Mosqueda-Romo, Néstor Aarón
,
Morales-Montor, Jorge
,
Legorreta-Herrera, Martha
in
Anemia
,
Animals
,
Antioxidants
2014
We decreased the level of gonadal steroids in female and male mice by gonadectomy. We infected these mice with P. berghei ANKA and observed the subsequent impact on the oxidative stress response. Intact females developed lower levels of parasitaemia and lost weight faster than intact males. Gonadectomised female mice displayed increased levels of parasitaemia, increased body mass, and increased anaemia compared with their male counterparts. In addition, gonadectomised females exhibited lower specific catalase, superoxide dismutase, and glutathione peroxidase activities in their blood and spleen tissues compared with gonadectomised males. To further study the oxidative stress response in P. berghei ANKA-infected gonadectomised mice, nitric oxide levels were assessed in the blood and spleen, and MDA levels were assessed in the spleen. Intact, sham-operated, and gonadectomised female mice exhibited higher levels of nitric oxide in the blood and spleen compared with male mice. MDA levels were higher in all of the female groups. Finally, gonadectomy significantly increased the oxidative stress levels in females but not in males. These data suggest that differential oxidative stress is influenced by oestrogens that may contribute to sexual dimorphism in malaria.
Journal Article
Identifying patients with undiagnosed small intestinal neuroendocrine tumours in primary care using statistical and machine learning: model development and validation study
by
Worker, Amanda
,
Mahon, Hadley
,
Fish, Peter
in
692/308/174
,
692/499
,
Biomedical and Life Sciences
2024
Background
Neuroendocrine tumours (NETs) are increasing in incidence, often diagnosed at advanced stages, and individuals may experience years of diagnostic delay, particularly when arising from the small intestine (SI). Clinical prediction models could present novel opportunities for case finding in primary care.
Methods
An open cohort of adults (18+ years) contributing data to the Optimum Patient Care Research Database between 1st Jan 2000 and 30th March 2023 was identified. This database collects de-identified data from general practices in the UK. Model development approaches comprised logistic regression, penalised regression, and XGBoost. Performance (discrimination and calibration) was assessed using internal-external cross-validation. Decision analysis curves compared clinical utility.
Results
Of 11.7 million individuals, 382 had recorded SI NET diagnoses (0.003%). The XGBoost model had the highest AUC (0.869, 95% confidence interval [CI]: 0.841–0.898) but was mildly miscalibrated (slope 1.165, 95% CI: 1.088–1.243; calibration-in-the-large 0.010, 95% CI: −0.164 to 0.185). Clinical utility was similar across all models.
Discussion
Multivariable prediction models may have clinical utility in identifying individuals with undiagnosed SI NETs using information in their primary care records. Further evaluation including external validation and health economics modelling may identify cost-effective strategies for case finding for this uncommon tumour.
Journal Article
Testosterone Modulates Oxidative Stress in a Sexually Dimorphic Manner in CBA/Ca Mice Infected with Plasmodium berghei ANKA
by
Salazar-Castañón, Víctor Hugo
,
Cervantes-Candelas, Luis Antonio
,
Legorreta-Herrera, Martha
in
Androgens
,
Animals
,
Antioxidants
2025
Malaria, the deadliest parasitic disease in the world, is sexually dimorphic, inflammatory, and oxidative. Males experience more severe symptoms and mortality than females do; therefore, the roles of 17β-estradiol and testosterone in this phenomenon have been studied. Both hormones affect oxidative stress, the primary mechanism of Plasmodium elimination. Estradiol has antioxidant activity, but the role of testosterone is controversial. Testosterone increases oxidative stress by reducing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, which increase lipoperoxidation in the testis. However, the antioxidant properties of testosterone in prostate and nervous tissue have also been reported. The discrepancies are probably because when testosterone levels increase, the aromatase enzyme transforms testosterone into estrogens that possess antioxidant activity, which masks the results. Therefore, it is unknown whether testosterone is involved in the sexual dimorphism that occurs in oxidative stress in malaria. In this work, we administered testosterone and simultaneously inhibited aromatase with letrozole to evaluate the role of testosterone in the sexually dimorphic pattern of oxidative stress that occurs in the blood, spleen, and brain of male and female CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). Testosterone triggers parasitemia in males, who also display more oxidative stress than females in the absence of infection, leading to sexually dimorphic patterns. Interestingly, increasing testosterone levels in infected mice reduced oxidative stress in males and increased oxidative stress in females, reversing or eliminating the dimorphic patterns observed. Oxidative stress varies in each tissue; the brain was the most protected, while the blood was the greatest damaged. Our findings highlight the role of testosterone as a regulator of oxidative stress in a tissue and sex-specific manner; therefore, understanding the role of testosterone in malaria may contribute to the development of sex-specific personalized antimalarial therapies.
Journal Article
DHEA Induces Sex-Associated Differential Patterns in Cytokine and Antibody Levels in Mice Infected with IPlasmodium berghei/I ANKA
by
Cervantes-Candelas, Luis Antonio
,
Legorreta-Herrera, Martha
,
Aguilar-Castro, Jesús
in
Analysis
,
B cells
,
Cytokines
2023
Malaria is the most lethal parasitic disease worldwide; the severity of symptoms and mortality are higher in men than in women, exhibiting an evident sexual dimorphism in the immune response; therefore, the contribution of 17β-estradiol and testosterone to this phenomenon has been studied. Both hormones differentially affect several aspects of innate and adaptive immunity. Dehydroepiandrosterone (DHEA) is the precursor of both hormones and is the sexual steroid in higher concentrations in humans, with immunomodulatory properties in different parasitic diseases; however, the involvement of DHEA in this sexual dimorphism has not been studied. In the case of malaria, the only information is that higher levels of DHEA are associated with reduced Plasmodium falciparum parasitemia. Therefore, this work aims to analyze the DHEA contribution to the sexual dimorphism of the immune response in malaria. We assessed the effect of modifying the concentration of DHEA on parasitemia, the number of immune cells in the spleen, cytokines, and antibody levels in plasma of CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). DHEA differentially affected the immune response in males and females: it decreased IFN-γ, IL-2 and IL-4 concentrations only in females, whereas in gonadectomized males, it increased IgG2a and IgG3 antibodies. The results presented here show that DHEA modulates the immune response against Plasmodium differently in each sex, which helps to explain the sexual dimorphism present in malaria.
Journal Article