Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
75 result(s) for "Buffa, Francesca M."
Sort by:
Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors
microRNAs are key regulators of the human transcriptome across a number of diverse biological processes, such as development, aging and cancer, where particular miRNAs have been identified as tumour suppressive and oncogenic. In this work, we elucidate, in a comprehensive manner, across 15 epithelial cancer types comprising 7316 clinical samples from the Cancer Genome Atlas, the association of miRNA expression and target regulation with the phenotypic hallmarks of cancer. Utilising penalised regression techniques to integrate transcriptomic, methylation and mutation data, we find evidence for a complex map of interactions underlying the relationship of miRNA regulation and the hallmarks of cancer. This highlighted high redundancy for the oncomiR-1 cluster of oncogenic miRNAs, in particular hsa-miR-17-5p. In addition, we reveal extensive miRNA regulation of tumour suppressor genes such as PTEN, FAT4 and CDK12, uncovering an alternative mechanism of repression in the absence of mutation, methylation or copy number changes. miRNAs have emerged as regulators of diverse biological processes including cancer. Here the authors present an extended pan-cancer analysis of the miRNAs in 15 epithelial cancers; integrating methylation, transcriptomic and mutation data they reveal alternative mechanisms of tumour suppressors’ regulation in absence of mutation, methylation or copy number alterations.
FANCD2 limits replication stress and genome instability in cells lacking BRCA2
Probing the synthetic lethal effect of FANCD2 deletion in BRCA2-deficient cells reveals independent roles of FANCD2 and BRCA2 in stabilizing stalled replication forks to maintain genome stability and promote cell survival. The tumor suppressor BRCA2 plays a key role in genome integrity by promoting replication-fork stability and homologous recombination (HR) DNA repair. Here we report that human cancer cells lacking BRCA2 rely on the Fanconi anemia protein FANCD2 to limit replication-fork progression and genomic instability. Our results identify a new role of FANCD2 in limiting constitutive replication stress in BRCA2-deficient cells, thereby affecting cell survival and treatment responses.
The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia
Tumour hypoxia renders cancer cells resistant to cancer therapy, resulting in markedly worse clinical outcomes. To find clinical candidate compounds that reduce hypoxia in tumours, we conduct a high-throughput screen for oxygen consumption rate (OCR) reduction and identify a number of drugs with this property. For this study we focus on the anti-malarial, atovaquone. Atovaquone rapidly decreases the OCR by more than 80% in a wide range of cancer cell lines at pharmacological concentrations. In addition, atovaquone eradicates hypoxia in FaDu, HCT116 and H1299 spheroids. Similarly, it reduces hypoxia in FaDu and HCT116 xenografts in nude mice, and causes a significant tumour growth delay when combined with radiation. Atovaquone is a ubiquinone analogue, and decreases the OCR by inhibiting mitochondrial complex III. We are now undertaking clinical studies to assess whether atovaquone reduces tumour hypoxia in patients, thereby increasing the efficacy of radiotherapy. Tumour hypoxia reduces the efficacy of radiotherapy. Starting from a drug screen, here the authors demonstrate that the anti-malarial, atovaquone, reduces the oxygen consumption rate of cancer cells by inhibition of mitochondrial complex III and sensitises to radiotherapy by reducing tumour hypoxia.
Robustness and reproducibility for AI learning in biomedical sciences: RENOIR
Artificial intelligence (AI) techniques are increasingly applied across various domains, favoured by the growing acquisition and public availability of large, complex datasets. Despite this trend, AI publications often suffer from lack of reproducibility and poor generalisation of findings, undermining scientific value and contributing to global research waste. To address these issues and focusing on the learning aspect of the AI field, we present RENOIR (REpeated random sampliNg fOr machIne leaRning), a modular open-source platform for robust and reproducible machine learning (ML) analysis. RENOIR adopts standardised pipelines for model training and testing, introducing elements of novelty, such as the dependence of the performance of the algorithm on the sample size. Additionally, RENOIR offers automated generation of transparent and usable reports, aiming to enhance the quality and reproducibility of AI studies. To demonstrate the versatility of our tool, we applied it to benchmark datasets from health, computer science, and STEM (Science, Technology, Engineering, and Mathematics) domains. Furthermore, we showcase RENOIR’s successful application in recently published studies, where it identified classifiers for SET2D and TP53 mutation status in cancer. Finally, we present a use case where RENOIR was employed to address a significant pharmacological challenge—predicting drug efficacy. RENOIR is freely available at https://github.com/alebarberis/renoir .
Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization
The miR200 family regulates EMT through E-cadherin modulation and has been proposed to contribute to metastasis thusly. This report identifies a promoting role of miR-200 in metastatic colonization that involves a novel target, the tumor secretome. The correlation between miR-200 and metastasis in people with cancer supports the relevance of this biphasic, multifaceted role of miR-200. Although the role of miR-200s in regulating E-cadherin expression and epithelial-to-mesenchymal transition is well established, their influence on metastatic colonization remains controversial. Here we have used clinical and experimental models of breast cancer metastasis to discover a pro-metastatic role of miR-200s that goes beyond their regulation of E-cadherin and epithelial phenotype. Overexpression of miR-200s is associated with increased risk of metastasis in breast cancer and promotes metastatic colonization in mouse models, phenotypes that cannot be recapitulated by E-cadherin expression alone. Genomic and proteomic analyses revealed global shifts in gene expression upon miR-200 overexpression toward that of highly metastatic cells. miR-200s promote metastatic colonization partly through direct targeting of Sec23a, which mediates secretion of metastasis-suppressive proteins, including Igfbp4 and Tinagl1, as validated by functional and clinical correlation studies. Overall, these findings suggest a pleiotropic role of miR-200s in promoting metastatic colonization by influencing E-cadherin–dependent epithelial traits and Sec23a-mediated tumor cell secretome.
Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer
A majority of breast cancers are driven by estrogen via estrogen receptor-α (ERα). Our previous studies indicate that hypoxia-inducible factor 1α (HIF-1α) cooperates with ERα in breast cancer cells. However, whether ERα is implicated in the direct regulation of HIF-1α and the role of HIF-1α in endocrine therapy response are unknown. In this study we found that a subpopulation of HIF-1α targets, many of them bearing both hypoxia response elements and estrogen response elements, are regulated by ERα in normoxia and hypoxia. Interestingly, the HIF-1α gene itself also bears an estrogen response element, and its expression is directly regulated by ERα. Clinical data revealed that expression of the HIF-1α gene or a hypoxia metagene signature is associated with a poor outcome to endocrine treatment in ERα⁺ breast cancer. HIF-1α was able to confer endocrine therapy resistance to ERα⁺ breast cancer cells. Our findings define, for the first time to our knowledge, a direct regulatory pathway between ERα and HIF-1α, which might modulate hormone response in treatment.
Metabolic symbiosis between oxygenated and hypoxic tumour cells: An agent-based modelling study
Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors. On the other hand, there is evidence that oxygenated tumour cells could be fuelled by exogenous lactate produced from glycolysis. We employed a multi-scale approach that integrates multi-agent modelling, diffusion-reaction, stoichiometric equations, and Boolean networks to study metabolic cooperation between hypoxic and oxygenated cells exposed to varying oxygen, nutrient, and inhibitor concentrations. The results show that the cooperation reduces the depletion of environmental glucose, resulting in an overall advantage of using aerobic glycolysis. In addition, the oxygen level was found to be decreased by symbiosis, promoting a further shift towards anaerobic glycolysis. However, the oxygenated and hypoxic populations may gradually reach quasi-equilibrium. A sensitivity analysis using Latin hypercube sampling and partial rank correlation shows that the symbiotic dynamics depends on properties of the specific cell such as the minimum glucose level needed for glycolysis. Our results suggest that strategies that block glucose transporters may be more effective to reduce tumour growth than those blocking lactate intake transporters.
Antitumour effect of the mitochondrial complex III inhibitor Atovaquone in combination with anti-PD-L1 therapy in mouse cancer models
Immune checkpoint blockade (ICB) provides effective and durable responses for several tumour types by unleashing an immune response directed against cancer cells. However, a substantial number of patients treated with ICB develop relapse or do not respond, which has been partly attributed to the immune-suppressive effect of tumour hypoxia. We have previously demonstrated that the mitochondrial complex III inhibitor atovaquone alleviates tumour hypoxia both in human xenografts and in cancer patients by decreasing oxygen consumption and consequently increasing oxygen availability in the tumour. Here, we show that atovaquone alleviates hypoxia and synergises with the ICB antibody anti-PD-L1, significantly improving the rates of tumour eradication in the syngeneic CT26 model of colorectal cancer. The synergistic effect between atovaquone and anti-PD-L1 relied on CD8+ T cells, resulted in the establishment of a tumour-specific memory immune response, and was not associated with any toxicity. We also tested atovaquone in combination with anti-PD-L1 in the LLC (lung) and MC38 (colorectal) cancer syngeneic models but, despite causing a considerable reduction in tumour hypoxia, atovaquone did not add any therapeutic benefit to ICB in these models. These results suggest that atovaquone has the potential to improve the outcomes of patients treated with ICB, but predictive biomarkers are required to identify individuals likely to benefit from this intervention.
Hypoxia-induced SETX links replication stress with the unfolded protein response
Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways. Hypoxia induces a change in transcriptional response in mammalian cells. Here the authors reveal a role for the RNA/DNA helicase Senataxin in protecting cells from DNA damage induced during transcription in hypoxia.
New role of fat-free mass in cancer risk linked with genetic predisposition
Cancer risk is associated with the widely debated measure body mass index (BMI). Fat mass and fat-free mass measurements from bioelectrical impedance may further clarify this association. The UK Biobank is a rare resource in which bioelectrical impedance and BMI data was collected on ~ 500,000 individuals. Using this dataset, a comprehensive analysis using regression, principal component and genome-wide genetic association, provided multiple levels of evidence that increasing whole body fat (WBFM) and fat-free mass (WBFFM) are both associated with increased post-menopausal breast cancer risk, and colorectal cancer risk in men. WBFM was inversely associated with prostate cancer. We also identified rs615029[T] and rs1485995[G] as associated in independent analyses with both PMBC (p = 1.56E–17 and 1.78E–11) and WBFFM (p = 2.88E–08 and 8.24E–12), highlighting splice variants of the intriguing long non-coding RNA CUPID1 (LINC01488) as a potential link between PMBC risk and fat-free mass.