Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
88
result(s) for
"Bugbee, Bruce"
Sort by:
On the contrasting morphological response to far-red at high and low photon fluxes
2023
Plants compete for sunlight and have evolved to perceive shade through both relative increases in the flux of far-red photons (FR; 700 to 750 nm) and decreases in the flux of all photons (intensity). These two signals interact to control stem elongation and leaf expansion. Although the interacting effects on stem elongation are well quantified, responses for leaf expansion are poorly characterized. Here we report a significant interaction between far-red fraction and total photon flux. Extended photosynthetic photon flux density (ePPFD; 400 to 750 nm) was maintained at three levels (50/100, 200 and 500 µmol m -2 s -1 ), each with a range of 2 to 33% FR. Increasing FR increased leaf expansion in three cultivars of lettuce at the highest ePPFD but decreased expansion at the lowest ePPFD. This interaction was attributed to differences in biomass partitioning between leaves and stems. Increased FR favored stem elongation and biomass partitioning to stems at low ePPFD and favored leaf expansion at high ePPFD. In cucumber, leaf expansion was increased with increasing percent FR under all ePPFD levels showing minimal interaction. The interactions (and lack thereof) have important implications for horticulture and warrant further study for plant ecology.
Journal Article
Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO2 Fixation and Increased Photon Capture During Long-Term Studies: Implications for Re-Defining PAR
2020
Far-red photons regulate shade avoidance responses and can have powerful effects on plant morphology and radiation capture. Recent studies have shown that far-red photons (700 to 750 nm) efficiently drive photosynthesis when added to traditionally defined photosynthetic photons (400–700 nm). But the long-term effects of far-red photons on canopy quantum yield have not yet been determined. We grew lettuce in a four-chamber, steady-state canopy gas-exchange system to separately quantify canopy photon capture, quantum yield for CO2 fixation, and carbon use efficiency. These measurements facilitate a mechanistic understanding of the effect of far-red photons on the components of plant growth. Day-time photosynthesis and night-time respiration of lettuce canopies were continuously monitored from seedling to harvest in five replicate studies. Plants were grown under a background of either red/blue or white light, each background with or without 15% (50 μmol m−2 s−1) of far-red photons substituting for photons between 400 and 700 nm. All four treatments contained 31.5% blue photons, and an equal total photon flux from 400 to 750 nm of 350 μmol m−2 s−1. Both treatments with far-red photons had higher canopy photon capture, increased daily carbon gain (net photosynthesis minus respiration at night), and 29 to 31% more biomass than control treatments. Canopy quantum yield was similar among treatments (0.057 ± 0.002 mol of CO2 fixed in gross photosynthesis per mole of absorbed photons integrated over 400 to 750 nm). Carbon use efficiency (daily carbon gain/gross photosynthesis) was also similar for mature plants (0.61 ± 0.02). Photosynthesis increased linearly with increasing photon capture and had a common slope among all four treatments, which demonstrates that the faster growth with far-red photon substitution was caused by enhanced photon capture through increased leaf expansion. The equivalent canopy quantum yield among treatments indicates that the absorbed far-red photons were equally efficient for photosynthesis when acting synergistically with the 400–700 nm photons.
Journal Article
Colorimetric determination of urea using diacetyl monoxime with strong acids
2021
Urea is a byproduct of the urea cycle in metabolism and is excreted through urine and sweat. Ammonia, which is toxic at low levels, is converted to the safe storage form of urea, which represents the largest efflux of nitrogen from many organisms. Urea is an important nitrogen source in agriculture, is added to many industrial products, and is a large component in wastewater. The enzyme urease hydrolyzes urea to ammonia and bicarbonate. This reaction is microbially mediated in soils, hydroponic solutions, and wastewater recycling and is catalyzed in vivo in plants using native urease, making measurement of urea environmentally important. Both direct and indirect methods to measure urea exist. This protocol uses diacetyl monoxime to directly determine the concentration of urea in solution. The protocol provides repeatable results and stable reagents with good color stability and simple measurement techniques for use in any lab with a spectrophotometer. The reaction between diacetyl monoxime and urea in the presence of sulfuric acid, phosphoric acid, thiosemicarbazide, and ferric chloride produces a chromophore with a peak absorbance at 520 nm and a linear relationship between concentration and absorbance from 0.4 to 5.0 mM urea in this protocol. The lack of detectable interferences makes this protocol suitable for the determination of millimolar levels of urea in wastewater streams and hydroponic solutions.
Journal Article
Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy
by
van Iersel, Marc
,
Bugbee, Bruce
,
Zhen, Shuyang
in
Consortia
,
Efficiency
,
Emerson Enhancement Effect
2021
At low photon flux densities, McCree (1971) and Inada (1976) found that red photons (600–700 nm) drive photosynthesis more efficiently than green (500–600 nm), followed by blue (400–500 nm) photons. Because green photons penetrate deeper into leaves, more recent studies indicate that at higher photon flux densities red and green photons are used more efficiently than blue photons (Terashima et al.,2009; Liu and van Iersel,2021). Over a decade later, the same research group found that the photosynthetic rate under simultaneous illumination with photons above 680 nm and shorter-wavelength light was greater than the sum of the rates from applying each light separately (Emerson et al.,1957). The main reason for this oversight is the belief that only the photosynthetic efficiency of longer-wavelength photons (~680 nm up to 720 nm) was improved by the supplementation with shorter-wavelength light, rather than a two-way synergistic interaction in which shorter- and longer-wavelength photons improve each other's photosynthetic efficiency; thus, the practical impact of the enhancement effect on photosynthesis was thought to be largely insignificant (Emerson et al.,1957; Myers and Graham,1963; McCree,1972a). [...]the now widely accepted definition of PAR was developed without taking account of synergistic effects on PSI and PSII photochemistry between far-red and shorter-wavelength photons.
Journal Article
Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures
by
Bugbee, Bruce
,
Nelson, Jacob A.
in
Agricultural production
,
Biology and Life Sciences
,
Canopies
2014
Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.
Journal Article
Colorimetric determination of urea using diacetyl monoxime with strong acids
by
Bugbee, Bruce
,
Langenfeld, Noah James
,
Payne, Lauren Elizabeth
in
Absorbance
,
Agriculture
,
Ammonia
2021
Urea is a byproduct of the urea cycle in metabolism and is excreted through urine and sweat. Ammonia, which is toxic at low levels, is converted to the safe storage form of urea, which represents the largest efflux of nitrogen from many organisms. Urea is an important nitrogen source in agriculture, is added to many industrial products, and is a large component in wastewater. The enzyme urease hydrolyzes urea to ammonia and bicarbonate. This reaction is microbially mediated in soils, hydroponic solutions, and wastewater recycling and is catalyzed in vivo in plants using native urease, making measurement of urea environmentally important. Both direct and indirect methods to measure urea exist. This protocol uses diacetyl monoxime to directly determine the concentration of urea in solution. The protocol provides repeatable results and stable reagents with good color stability and simple measurement techniques for use in any lab with a spectrophotometer. The reaction between diacetyl monoxime and urea in the presence of sulfuric acid, phosphoric acid, thiosemicarbazide, and ferric chloride produces a chromophore with a peak absorbance at 520 nm and a linear relationship between concentration and absorbance from 0.4 to 5.0 mM urea in this protocol. The lack of detectable interferences makes this protocol suitable for the determination of millimolar levels of urea in wastewater streams and hydroponic solutions.
Journal Article
Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux
by
Bugbee, Bruce
,
Snowden, M. Chase
,
Cope, Kevin R.
in
Assimilation
,
Avoidance behavior
,
Biology and Life Sciences
2016
Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.
Journal Article
Improving the Predictive Value of Phytochrome Photoequilibrium: Consideration of Spectral Distortion Within a Leaf
2021
The ratio of active phytochrome (Pfr) to total phytochrome (Pr + Pfr), called phytochrome photo-equilibrium (PPE; also called phytochrome photostationary state, PSS) has been used to explain shade avoidance responses in both natural and controlled environments. PPE is commonly estimated using measurements of the spectral photon distribution (SPD) above the canopy and photoconversion coefficients. This approach has effectively predicted morphological responses when only red and far-red (FR) photon fluxes have varied, but controlled environment research often utilizes unique ratios of wavelengths so a more rigorous evaluation of the predictive ability of PPE on morphology is warranted. Estimations of PPE have rarely incorporated the optical effects of spectral distortion within a leaf caused by pigment absorbance and photon scattering. We studied stem elongation rate in the model plant cucumber under diverse spectral backgrounds over a range of one to 45% FR (total photon flux density, 400–750 nm, of 400 μmol m –2 s –1 ) and found that PPE was not predictive when blue and green varied. Preferential absorption of red and blue photons by chlorophyll results in an SPD that is relatively enriched in green and FR at the phytochrome molecule within a cell. This can be described by spectral distortion functions for specific layers of a leaf. Multiplying the photoconversion coefficients by these distortion functions yields photoconversion weighting factors that predict phytochrome conversion at the site of photon perception within leaf tissue. Incorporating spectral distortion improved the predictive value of PPE when phytochrome was assumed to be homogeneously distributed within the whole leaf. In a supporting study, the herbicide norflurazon was used to remove chlorophyll in seedlings. Using distortion functions unique to either green or white cotyledons, we came to the same conclusions as with whole plants in the longer-term study. Leaves of most species have similar spectral absorbance so this approach for predicting PPE should be broadly applicable. We provide a table of the photoconversion weighting factors. Our analysis indicates that the simple, intuitive ratio of FR (700–750 nm) to total photon flux (far-red fraction) is also a reliable predictor of morphological responses like stem length.
Journal Article
Cannabis lighting: Decreasing blue photon fraction increases yield but efficacy is more important for cost effective production of cannabinoids
by
Westmoreland, F. Mitchell
,
Kusuma, Paul
,
Bugbee, Bruce
in
Agricultural production
,
Auroral kilometric radiation
,
Biology and Life Sciences
2021
LED technology facilitates a range of spectral quality, which can be used to optimize photosynthesis, plant shape and secondary metabolism. We conducted three studies to investigate the effect of blue photon fraction on yield and quality of medical hemp. Conditions were varied among studies to evaluate potential interactions with environment, but all environmental conditions other than the blue photon fraction were maintained constant among the five-chambers in each study. The photosynthetic photon flux density (PPFD, 400 to 700 nm) was rigorously maintained at the set point among treatments in each study by raising the fixtures. The lowest fraction of blue photons was 4% from HPS, and increased to 9.8, 10.4, 16, and 20% from LEDs. There was a consistent, linear, 12% decrease in yield in each study as the fraction of blue photons increased from 4 to 20%. Dry flower yield ranged from 500 to 750 g m -2 . This resulted in a photon conversion efficacy of 0.22 to 0.36 grams dry flower mass yield per mole of photons. Yield was higher at a PPFD of 900 than at 750 μmol m -2 s -1 . There was no effect of spectral quality on CBD or THC concentration. CBD and THC were 8% and 0.3% at harvest in trials one and two, and 12% and 0.5% in trial three. The CBD/THC ratio was about 25 to 1 in all treatments and studies. The efficacy of the fixtures ranged from 1.7 (HPS) to 2.5 μmol per joule (white+red LED). Yield under the white+red LED fixture (10.4% blue) was 4.6% lower than the HPS on a per unit area basis, but was 27% higher on a per dollar of electricity basis. These findings suggest that fixture efficacy and initial cost of the fixture are more important for return on investment than spectral distribution at high photon flux.
Journal Article
Aeration and agitation in hydroponic culture have detrimental effects on iron uptake
2025
Aeration in deep-flow liquid hydroponics provides oxygen for respiration, but even gentle movement from solution agitation can alter the beneficial rhizosphere. Here we report the detrimental effects of bubbling-induced agitation of the rhizosphere on iron uptake and chlorosis of tomato, sunflower, and corn. We grew each species in deep-flow liquid hydroponics with aeration rates from 0 to 2 liters per minute and in a peat-based soilless media, which allowed plants to develop an undisturbed rhizosphere. All three species had ample iron and chlorophyll in soilless media with the same nutrient solution and pH as in liquid hydroponics. Conversely, chlorophyll and iron uptake were dramatically reduced in hydroponic sunflower and corn by gentle agitation of the solution. Tomato, however, was minimally affected by solution agitation. These results indicate that minimizing solution agitation allows the formation of a beneficial rhizosphere. Collectively, these studies demonstrate that controlled agitation might be used to alter root boundary layer thickness and thus quantify rhizosphere effects on nutrient uptake and growth.
Journal Article