Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Bulankova, Petra"
Sort by:
The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms
by
Brembu, Tore
,
Osuna-Cruz, Cristina Maria
,
Cirri, Emilio
in
45/91
,
631/181/735
,
631/208/726/649
2020
Benthic diatoms are the main primary producers in shallow freshwater and coastal environments, fulfilling important ecological functions such as nutrient cycling and sediment stabilization. However, little is known about their evolutionary adaptations to these highly structured but heterogeneous environments. Here, we report a reference genome for the marine biofilm-forming diatom
Seminavis robusta
, showing that gene family expansions are responsible for a quarter of all 36,254 protein-coding genes. Tandem duplications play a key role in extending the repertoire of specific gene functions, including light and oxygen sensing, which are probably central for its adaptation to benthic habitats. Genes differentially expressed during interactions with bacteria are strongly conserved in other benthic diatoms while many species-specific genes are strongly upregulated during sexual reproduction. Combined with re-sequencing data from 48 strains, our results offer insights into the genetic diversity and gene functions in benthic diatoms.
Available genomics studies have mostly focused on planktonic centric diatom. Here, the authors report the genome assembly of the marine biofilm-forming diatom
Seminavis robusta
and the resequencing data of a panel of accessions to reveal their evolutionary adaptations.
Journal Article
Identification of Arabidopsis Meiotic Cyclins Reveals Functional Diversification among Plant Cyclin Genes
by
Bulankova, Petra
,
Akimcheva, Svetlana
,
Fellner, Nicole
in
Analysis
,
Arabidopsis - genetics
,
Arabidopsis Proteins - genetics
2013
Meiosis is a modified cell division in which a single S-phase is followed by two rounds of chromosome segregation resulting in the production of haploid gametes. The meiotic mode of chromosome segregation requires extensive remodeling of the basic cell cycle machinery and employment of unique regulatory mechanisms. Cyclin-dependent kinases (CDKs) and cyclins represent an ancient molecular module that drives and regulates cell cycle progression. The cyclin gene family has undergone a massive expansion in angiosperm plants, but only a few cyclins were thoroughly characterized. In this study we performed a systematic immunolocalization screen to identify Arabidopsis thaliana A- and B-type cyclins expressed in meiosis. Many of these cyclins exhibit cell-type-specific expression in vegetative tissues and distinct subcellular localization. We found six A-type cyclins and a single B-type cyclin (CYCB3;1) to be expressed in male meiosis. Mutant analysis revealed that these cyclins contribute to distinct meiosis-related processes. While A2 cyclins are important for chromosome segregation, CYCB3;1 prevents ectopic cell wall formation. We further show that cyclin SDS does not contain a D-box and is constitutively expressed throughout meiosis. Analysis of plants carrying cyclin SDS with an introduced D-box motif determined that, in addition to its function in recombination, SDS acts together with CYCB3;1 in suppressing unscheduled cell wall synthesis. Our phenotypic and expression data provide extensive evidence that multiplication of cyclins is in plants accompanied by functional diversification.
Journal Article
Mating type specific transcriptomic response to sex inducing pheromone in the pennate diatom Seminavis robusta
2021
Sexual reproduction is a fundamental phase in the life cycle of most diatoms. Despite its role as a source of genetic variation, it is rarely reported in natural circumstances and its molecular foundations remain largely unknown. Here, we integrate independent transcriptomic datasets to prioritize genes responding to sex inducing pheromones (SIPs) in the pennate diatom
Seminavis robusta
. We observe marked gene expression changes associated with SIP treatment in both mating types, including an inhibition of S phase progression, chloroplast division, mitosis, and cell wall formation. Meanwhile, meiotic genes are upregulated in response to SIP, including a sexually induced diatom specific cyclin. Our data further suggest an important role for reactive oxygen species, energy metabolism, and cGMP signaling during the early stages of sexual reproduction. In addition, we identify several genes with a mating type specific response to SIP, and link their expression pattern with physiological specialization, such as the production of the attraction pheromone diproline in mating type − (MT−) and mate-searching behavior in mating type + (MT+). Combined, our results provide a model for early sexual reproduction in pennate diatoms and significantly expand the suite of target genes to detect sexual reproduction events in natural diatom populations.
Journal Article
A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis
by
Tanasa, Sorin
,
Fulnecek, Jaroslav
,
Mittelsten Scheid, Ortrun
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - physiology
2021
Meiosis in angiosperm plants is followed by mitotic divisions to form multicellular haploid gametophytes. Termination of meiosis and transition to gametophytic development is, in Arabidopsis, governed by a dedicated mechanism that involves SMG7 and TDM1 proteins. Mutants carrying the
smg7-6
allele are semi-fertile due to reduced pollen production. We found that instead of forming tetrads,
smg7-6
pollen mother cells undergo multiple rounds of chromosome condensation and spindle assembly at the end of meiosis, resembling aberrant attempts to undergo additional meiotic divisions. A suppressor screen uncovered a mutation in centromeric histone H3 (CENH3) that increased fertility and promoted meiotic exit in
smg7-6
plants. The mutation led to inefficient splicing of the CENH3 mRNA and a substantial decrease of CENH3, resulting in smaller centromeres. The reduced level of CENH3 delayed formation of the mitotic spindle but did not have an apparent effect on plant growth and development. We suggest that impaired spindle re-assembly at the end of meiosis limits aberrant divisions in
smg7-6
plants and promotes formation of tetrads and viable pollen. Furthermore, the mutant with reduced level of CENH3 was very inefficient haploid inducer indicating that differences in centromere size is not the key determinant of centromere-mediated genome elimination.
Journal Article
TDM1 Regulation Determines the Number of Meiotic Divisions
by
Renne, Charlotte
,
Riha, Karel
,
Harashima, Hirofumi
in
Anaphase-Promoting Complex-Cyclosome - metabolism
,
Arabidopsis - cytology
,
Arabidopsis - genetics
2016
Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively.
Journal Article
Role of STN1 and DNA Polymerase α in Telomere Stability and Genome-Wide Replication in Arabidopsis
by
Derboven, Elisa
,
Ekker, Heinz
,
Bulankova, Petra
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2014
The CST (Cdc13/CTC1-STN1-TEN1) complex was proposed to have evolved kingdom specific roles in telomere capping and replication. To shed light on its evolutionary conserved function, we examined the effect of STN1 dysfunction on telomere structure in plants. STN1 inactivation in Arabidopsis leads to a progressive loss of telomeric DNA and the onset of telomeric defects depends on the initial telomere size. While EXO1 aggravates defects associated with STN1 dysfunction, it does not contribute to the formation of long G-overhangs. Instead, these G-overhangs arise, at least partially, from telomerase-mediated telomere extension indicating a deficiency in C-strand fill-in synthesis. Analysis of hypomorphic DNA polymerase α mutants revealed that the impaired function of a general replication factor mimics the telomeric defects associated with CST dysfunction. Furthermore, we show that STN1-deficiency hinders re-replication of heterochromatic regions to a similar extent as polymerase α mutations. This comparative analysis of stn1 and pol α mutants suggests that STN1 plays a genome-wide role in DNA replication and that chromosome-end deprotection in stn1 mutants may represent a manifestation of aberrant replication through telomeres.
Journal Article
Author Correction: The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms
by
Brembu, Tore
,
Osuna-Cruz, Cristina Maria
,
Cirri, Emilio
in
631/181/735
,
631/208/726/649
,
631/61/212/748
2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Journal Article
Meiotic Progression in Arabidopsis Is Governed by Complex Regulatory Interactions between SMG7, TDM1, and the Meiosis I-Specific Cyclin TAM
2010
Meiosis is a modified cell division that produces four haploid nuclei from a single diploid cell in two rounds of chromosome segregation. Here, we analyze the role of Arabidopsis thaliana SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7), THREE DIVISION MUTANT1 (TDM1), and TARDY ASYNCHRONOUS MEIOSIS (TAM) in meiotic progression. SMG7 is a conserved nonsense-mediated mRNA decay factor that is also, in Arabidopsis, essential for completion of meiosis. Examination of activating CYCLIN DEPENDENT KINASE A;1 phosophorylation at Thr-161 suggests that the meiotic arrest observed in smg7 mutants is likely caused by a failure to downregulate cyclin-dependent kinase (CDK) activity at the end of the second meiotic division. Genetic analysis indicates that SMG7 and TDM1 act in the same pathway to facilitate exit from meiosis. We further demonstrate that the cyclin TAM is specifically expressed in meiosis I and has both stimulatory and inhibitory effects on progression to meiosis II. TAM knockouts skip the second meiotic division producing unreduced gametes, but inactivation of SMG7 or TDM1 alleviates TAM's requirement for entry into meiosis II. We propose a model that meiotic progression in Arabidopsis pollen mother cells is driven by a yet to be identified cyclin-CDK activity that is modulated by regulatory interactions between TDM1, SMG7, and TAM.
Journal Article