Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
201 result(s) for "Burger, Joseph"
Sort by:
Underappreciated plant vulnerabilities to heat waves
With climate change, heat waves are becoming increasingly frequent, intense and broader in spatial extent. However, while the lethal effects of heat waves on humans are well documented, the impacts on flora are less well understood, perhaps except for crops. We summarize recent findings related to heat wave impacts including: sublethal and lethal effects at leaf and plant scales, secondary ecosystem effects, and more complex impacts such as increased heat wave frequency across all seasons, and interactions with other disturbances. We propose generalizable practical trials to quantify the critical bounding conditions of vulnerability to heat waves. Collectively, plant vulnerabilities to heat waves appear to be underappreciated and understudied, particularly with respect to understanding heat wave driven plant die-off and ecosystem tipping points.
How deregulation, drought and increasing fire impact Amazonian biodiversity
Biodiversity contributes to the ecological and climatic stability of the Amazon Basin 1 , 2 , but is increasingly threatened by deforestation and fire 3 , 4 . Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079–189,755 km 2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3–85.2% of species that are listed as threatened in this region 5 . The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253–10,343 km 2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon. Remote-sensing estimates of fires and the estimated geographic ranges of thousands of plant and vertebrate species in the Amazon Basin reveal that fires have impacted the ranges of 77–85% of threatened species over the past two decades.
Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts inBMRand thermal conductance confer important adaptations to environmental temperature in both birds and mammals.
The Macroecology of Sustainability
The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development.
Food Spoilage, Storage, and Transport
Human societies have always faced temporal and spatial fluctuations in food availability. The length of time that food remains edible and nutritious depends on temperature, moisture, and other factors that affect the growth rates of organisms that cause spoilage. Some storage techniques, such as drying, salting, and smoking, date back to ancient hunter–gatherer and early agricultural societies and use relatively low energy inputs. Newer technologies developed since the industrial revolution, such as canning and compressed-gas refrigeration, require much greater energy inputs. Coincident with the development of storage technologies, the transportation of food helped to overcome spatial and temporal fluctuations in productivity, culminating in today’s global transport system, which delivers fresh and preserved foods worldwide. Because most contemporary humans rely on energy-intensive technologies for storing and transporting food, there are formidable challenges for feeding a growing and increasingly urbanized global population as finite supplies of fossil fuels rapidly deplete.
Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux
β-Carotene adds nutritious value and determines the color of many fruits, including melon (Cucumis melo). In melon mesocarp, β-carotene accumulation is governed by the Orange gene (CmOr) golden single-nucleotide polymorphism (SNP) through a yet to be discovered mechanism. In Arabidopsis (Arabidopsis thaliana), OR increases carotenoid levels by posttranscriptionally regulating phytoene synthase (PSY). Here, we identified a CmOr nonsense mutation (Cmor-lowβ) that lowered fruit β-carotene levels with impaired chromoplast biogenesis. Cmor-lowβ exerted a minimal effect on PSY transcripts but dramatically decreased PSY protein levels and enzymatic activity, leading to reduced carotenoid metabolic flux and accumulation. However, the golden SNP was discovered to not affect PSY protein levels and carotenoid metabolic flux in melon fruit, as shown by carotenoid and immunoblot analyses of selected melon genotypes and by using chemical pathway inhibitors. The high β-carotene accumulation in golden SNP melons was found to be due to a reduced further metabolism of β-carotene. This was revealed by genetic studies with double mutants including carotenoid isomerase (yofi), a carotenoid-isomerase nonsense mutant, which arrests the turnover of prolycopene. The yofi F2 segregants accumulated prolycopene independently of the golden SNP. Moreover, Cmor-lowβ was found to inhibit chromoplast formation and chloroplast disintegration in fruits from 30 d after anthesis until ripening, suggesting that CmOr regulates the chloroplast-to-chromoplast transition. Taken together, our results demonstrate that CmOr is required to achieve PSY protein levels to maintain carotenoid biosynthesis metabolic flux but that the mechanism of the CmOr golden SNP involves an inhibited metabolism downstream of β-carotene to dramatically affect both carotenoid content and plastid fate.
Genome-Wide Linkage-Disequilibrium Mapping to the Candidate Gene Level in Melon (Cucumis melo)
Cucumis melo is highly diverse for fruit traits providing wide breeding and genetic research opportunities, including genome-wide association (GWA) analysis. We used a collection of 177 accessions representing the two C. melo subspecies and 11 horticultural groups for detailed characterization of fruit traits variation and evaluation of the potential of GWA for trait mapping in melon. Through genotyping-by-sequencing, 23,931 informative SNPs were selected for genome-wide analyses. We found that linkage-disequilibrium decays at ~100 Kb in this collection and that population structure effect on association results varies between traits. We mapped several monogenic traits to narrow intervals overlapping with known causative genes, demonstrating the potential of diverse collections and GWA for mapping Mendelian traits to a candidate-gene level in melon. We further report on mapping of fruit shape quantitative trait loci (QTLs) and comparison with multiple previous QTL studies. Expansion of sample size and a more balanced representation of taxonomic groups might improve efficiency for simple traits dissection. But, as in other plant species, integrated linkage-association multi-allelic approaches are likely to produce better combination of statistical power, diversity capture and mapping resolution in melon. Our data can be utilized for selection of the most appropriate accessions for such approaches.
Extra-metabolic energy use and the rise in human hyper-density
Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.
A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis
Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression ofORfrom Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression ofAtORHis (R90H) orSbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found thatAtORAla (R90A) functioned similarly toAtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHisgreatly affected carotenogenic gene expression. AtORHisexhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHistriggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability ofAtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstratesORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlyingORHis -regulated carotenoid accumulation.