Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Publisher
    • Source
    • Donor
    • Place of Publication
    • Contributors
    • Location
1 result(s) for "Burger, Scott V., author"
Sort by:
Introduction to machine learning with R : rigorous mathematical analysis
Machine learning can be a difficult subject if you're not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You'll start with the basics like regression, then move into more advanced topics like neural networks, and finally delve into the frontier of machine learning in the R world with packages like Caret. By developing a familiarity with topics like understanding the difference between regression and classification models, you'll be able to solve an array of machine learning problems. Knowing when to use a specific model or not can mean the difference between a highly accurate model and a completely useless one. This book provides copious examples to build a working knowledge of machine learning. Understand the major parts of machine learning algorithms Recognize how machine learning can be used to solve a problem in a simple manner Figure out when to use certain machine learning algorithms versus others Learn how to operationalize algorithms with cutting edge packages