Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Burgo, Thiago A. L."
Sort by:
Direct observation of electrostatic charging in 3D printing
The spontaneous electrification of surfaces and interfaces is a widespread phenomenon that produces unexpected effects in chemical reactivity and mass charge transfer, revealed in abundant literature over the past twenty years. The pervasive presence of electrostatic charges originates from many sources, including friction, mechanochemical reactions, phase change, flexoelectricity, and others. Since fused deposition modeling undergoes most well-known electrification mechanisms, it would be not surprising that 3D-printed objects display large amounts of charge. Here we uncover the hitherto unexplored realm of electrostatic charging in 3D printing, underscores the impact of printing parameters on charge generation in polymers. Substrates, printing speed, temperature, and printing direction each exert distinct impacts on charge buildup, depending upon the material used for printing. We also develop simple protocols employing common multimeters for charge monitoring, while substrates subjected to corona charging or triboelectrification demonstrate effective methods for charge control or mitigation. An original development is achieved by demonstrating the ability to print quasi-electrets, indicating a potential revolution in electret technology. The implications of these findings establish the groundwork for advancements in 3D printing technology and electrostatics, creating new scientific opportunities for a better understanding of matter. In this work, authors investigate how printing parameters like speed, temperature, and direction affect electrostatic charge in 3Dprinted polymers. They develop protocols for charge monitoring and control, demonstrating the potential to print quasi-electrets and offering insights into electrostatics during 3D printing.
Friction coefficient dependence on electrostatic tribocharging
Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.
Water’s Electric Imprint on Earth
This review explores the pervasive role of water in generating, storing, and mediating electric charge across natural and artificial systems. Far from being a passive medium, water actively participates in electrostatic and electrochemical processes through its intrinsic ionization, interfacial polarization, and charge separation mechanisms. The Maxwell–Wagner–Sillars (MWS) effect is presented as a unifying framework explaining charge accumulation at air–water, water–ice, and water–solid interfaces, forming dynamic “electric mosaics” across Earth’s environments. The authors integrate diverse phenomena—triboelectricity, hygroelectricity, hydrovoltaic effects, elastoelectricity, and electric-field-driven phase transitions—showing that ambient water continually shapes the planet’s electrical landscape. Electrostatic shielding by humid air and hydrated materials is described, as well as the spontaneous electrification of sliding or dripping water droplets, revealing new pathways for clean energy generation. In addition, the review highlights how electric fields and interfacial charges alter condensation, freezing, and chemical reactivity, underpinning discoveries such as microdroplet chemistry, “on-water” reactions, and spontaneous redox processes producing hydrogen and hydrogen peroxide. Altogether, the paper frames water as a universal electrochemical medium whose interfacial electric imprint influences atmospheric, geological, and biological phenomena while offering novel routes for sustainable technologies based on ambient charge dynamics and water-mediated electrification.