Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
62 result(s) for "Burke, I.C."
Sort by:
Ecological responses of dominant grasses along two climatic gradients in the Great Plains of the United States
Few empirical data exist to examine the influence of regional scale environmental gradients on productivity patterns of plant species. In this paper we analyzed the productivity of several dominant grass species along two climatic gradients, mean annual precipitation (MAP) and mean annual temperature (MAT), in the Great Plains of the United States. We used climatic data from 296 weather stations, species production data from Natural Resource Conservation Service rangeland surveys and a geographic information system to spatially integrate the data. Both MAP and MAT were significantly related to annual above-ground net primary production (ANPP). MAP explained 54 % to 89 % of the variation in ANPP of two C4 short-grasses, Bouteloua gracilis and Buchloë dactyloides, and two C4 tall-grasses, Andropogon gerardii and Schizachyrium scoparium (= Andropogon scoparius). MAT explained 19 % to 41 % of the variation in ANPP of two C4 grasses, B. gracilis and B. dactyloides, and 41 % to 66 % of the variation in ANPP of two C3 grasses, Agropyron smithii and Stipa comata. ANPP patterns for species along both gradients were described by either linear, negative exponential, logistic, normal or skewed curves. Patterns of absolute ANPP (g/m2) for species differed from those of relative ANPP (%) along the MAP gradient. Responses were similar for species with common functional characteristics (e.g. short-grasses, tall-grasses, C3, C4). Our empirical results support asymmetric responses of species to environmental gradients. Results demonstrate the importance of species attributes, type of environmental gradient and measure of species importance (relative or absolute productivity) in evaluating ecological response patterns.
Methane and nitrous oxide fluxes from urban soils to the atmosphere
Land-use change is an important driver of soil-atmosphere gas exchange, but current greenhouse-gas budgets lack data from urban lands. Field comparisons of urban and non-urban ecosystems are required to predict the consequences of global urban-land expansion for greenhouse-gas budgets. In a rapidly urbanizing region of the U.S. Great Plains, we measured soil-atmosphere exchange of methane (CH4) and nitrous oxide (N2O) for one year in replicated (n = 3) urban lawn, native shortgrass steppe, dryland wheat-fallow, and flood-irrigated corn ecosystems. All soils were net sinks for atmospheric CH4, but uptake by urban, corn, and wheat-fallow soils was half that of native grasslands ($-0.30 \\pm 0.04 g C\\cdot m^{-2}\\cdot yr^{-1}$[mean ± 1 SE]). Urban ($0.24 \\pm 0.03 g N\\cdot m^{-2}\\cdot yr^{-1}$) and corn ($0.20 \\pm 0.02 g N\\cdot m^{-2}\\cdot yr^{-1}$) soils emitted 10 times more N2O to the atmosphere than native grassland and wheat-fallow soils. Using remotely sensed land-cover data we calculated an upper bound for the contribution of lawns to regional soil-atmosphere gas fluxes. Urban lawns occupied 6.4% of a$1578-km^2$study region, but contribute up to 5% and 30% of the regional soil CH4consumption and N2O emission, respectively, from land-use types that we sampled. Lawns that cover small portions of the landscape may contribute significantly to regional soil-atmosphere gas exchange.
Functional traits of graminoids in semi-arid steppes: a test of grazing histories
1. Understanding variability in ecosystem response to grazing is essential for improving management. Recent efforts have focused on the role of plant functional traits but do not identify factors influencing trait development. As traits are legacies of historical selective pressures, they may indicate the importance of a plant community's evolutionary history of grazing. 2. We compared grazing-resistance traits of graminoids collected in the Patagonian steppe of Argentina, presumed to have a long evolutionary history of grazing, and the sagebrush steppe of the north-western USA, known to have a short grazing history. The purpose of this comparison was to test the influence of grazing history and aridity on resistance traits, and to generate predictions about the vulnerability of these ecosystems to grazing impacts. We measured both morphology and leaf chemical composition on common species from an arid and a semi-arid site in each region, then performed a principal components analysis on the species-by-traits matrix. 3. The first axis of the ordination was correlated with measures of forage quality such as leaf tensile strength, fibre and nitrogen content, while the second axis was correlated with plant stature. The dominant species from the drier Patagonia site scored significantly lower on the first axis (lower forage quality) than dominants from the sagebrush steppe. Plants from the wetter Patagonia site were intermediate in forage quality. Sagebrush steppe species scored significantly higher on the second axis (taller) but this difference was not significant when we considered only dominant species. 4. The intercontinental differences in plant traits are consistent with evidence indicating a longer evolutionary history of grazing in Patagonia. Differences in traits between the dry and wet sites in Patagonia are consistent with the hypothesis that aridity promotes grazing resistance, although trait contrasts between the drier and wetter sagebrush sites were not significant. 5. Differences in soil texture, which may influence nitrogen availability, offer an alternative explanation for differences in forage quality between Patagonia and sagebrush steppe, and between the drier and wetter sites within Patagonia. 6. Synthesis and applications. Our comparison of plant traits suggests that interactions between evolutionary history of grazing and abiotic covariates, especially soil texture, have selected for low forage quality in Patagonia relative to sagebrush steppe. This contrast in grazing-resistance traits leads to the prediction that livestock grazing will have less impact on upland plant communities in Patagonian steppe compared with the sagebrush steppe of the USA, particularly if low nitrogen content limits offtake. Plant functional traits represent an easily quantified link between evolutionary grazing history and ecosystem responses to contemporary management.
The Effect of Climate and Cultivation on Soil Organic C and N
Here, we investigate the response of soil organic carbon (SOC) and soil organic nitrogen (SON) to cultivation within two different climatic regimes by comparing large soil data sets from India and the Great Plains. Multiple regression models for both regions show that SOC and SON, as well as C/N ratios, increase with decreasing temperatures and increasing precipitation, trends also noted in soil data organized by Holdridge life zones. The calculated difference between natural and cultivated soils in India revealed that the greatest absolute SOC and SON losses occurred in regions of low temperatures and high precipitation, while the C/N ratio decreased during cultivation only with decreasing temperature. In India, the fractional loss of SOC relative to undisturbed soils increases with decreasing temperature whereas, in the Great Plains, it increases with increasing precipitation. Also, the fractional loss of SOC increased in India with increasing amounts of original C, whereas no relationship between fractional loss and original C was noted for the Great Plains. The differential response of each region to cultivation is hypothesized to be due to differences in both climate and management practices (crop cycles, fertilization). These findings suggest that estimates of soil C loss due to cultivation should be based on an array of factors, and that it is unlikely that a constant relative C loss occurs in any region.
Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence
Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r² = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to >100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.
Plant traits and ecosystem grazing effects: comparison of U.S. sagebrush steppe and Patagonian steppe
Plant functional traits provide one tool for predicting the effects of grazing on different ecosystems. To test this approach, we compared plant traits and grazing response across analogous climatic gradients in sagebrush steppe, USA (SGBR), known to have a short evolutionary history of grazing, and Patagonian steppe, Argentina (PAT), where generalist herbivores exerted stronger selective pressures. We measured grazing response by sampling vegetation and soils across distance-from-water gradients at arid, semiarid, and subhumid study areas in both regions. Based on a previous analysis of graminoid traits, we predicted that: (1) high forage quality in all three SGBR communities would lead to high utilization and large grazing effects, whereas low quality in arid PAT would constrain utilization and grazing impacts, with semiarid and subhumid PAT intermediate in quality and grazing response; and (2) grazing in arid PAT would cause shifts in relative abundance within the graminoid functional group, due to the large range of forage quality among graminoids, but in SGBR, where all graminoids are relatively palatable, shifts in abundance would occur between grasses and shrubs. Utilization in locations close to water was higher in SGBR than in PAT study areas. This utilization difference led to differences in grazing effects consistent with our first prediction. Abundance of graminoids increased with distance from water in all three SGBR communities and in subhumid PAT, but not in arid PAT. Shrub and total production decreased with distance in SGBR but not PAT study areas. Grazing variables explained less variation in species composition in arid PAT (43%) than in any other study area (59-74%). Grazing did not significantly influence species richness. Evidence for our second prediction was mixed. Grazing did alter the relative abundance of SGBR graminoids and shrubs, but abundance shifts among the graminoids in SGBR communities were larger than in PAT communities, counter to our prediction. This case study demonstrates how plant traits can explain relative effects of grazing on ecosystem structure and functioning, although predicting species-specific responses remains a challenge. Regardless of their evolutionary origin, poor-quality graminoids make the arid Patagonian steppe more resistant to overgrazing than communities dominated by more nutritious species.
Integrated modeling of land use and cover change
A conceptual model of agricultural land use on the US Great Plains is presented. The model can be linked with simulation models currently used in land use research. Such integrated models can proved useful in assessing the effects of changes in the factors behind land use.
ANPP estimates from NDVI for the central grassland region of the United States
Several studies have suggested the existence of a positive relationship between the Normalized Difference Vegetation Index (NDVI) derived from AVHRR/NOAA satellite data and either biomass or annual aboveground net primary production (ANPP) for different geographic areas and ecosystems. We calibrated a 4-yr average of the ingegral of the NDVI (NDVI-I) using spatially aggregated values of ANPP. We also provided an estimate of the energy conversion efficiency coefficient (ε) of Monteith's equation. This is the first attempt to calibrate a standard NDVI product for temperate perennial grasslands. We found a positive and statistically significant relationship between NDVI-I and ANPP for grassland areas with mean annual precipitation between 280 and 1150 mm, and mean annual temperature between 4⚬ and 20⚬ C. Depending on the method used to estimate the fraction of photosynthetic active radiation, the energy conversion officency coefficient was constant (0.24 g C/MJ), or varied across the precipitation gradient, from 0.10 g C/MJ for the least productive to 0.20 g C/MJ for the most productive sites.
Regional and temporal variation in net primary production and nitrogen mineralization in grasslands
Spatial variability that occurs at large scales has long been used by ecologists as a tool to examine the controls over ecosystem structure and function. Correlations of control variables such as climatic factors and response variables such as vegetation and soil carbon storage across broad regions have played a crucial role in predicting the response of ecosystems to global climate change. Despite the importance of these large-scale space-for-time substitutions, there are substantial limitations. One of these limitations is that many of the possible control factors covary with one another, and only some of the important control factors actually exist in large-scale databases. Thus, the true proximal controls may be difficult to identify. A second limitation is that models of spatial variability may not be appropriately applied to temporal variability. In this paper, we utilize a new approach to determine the extent to which N availability may constrain aboveground primary productivity in the Central Grassland region of the U.S. The strong relationship between average annual primary production and average annual precipitation found in spatial patterns in ecosystems globally has often been interpreted as evidence of a fundamental water limitation. However, temporal variation in annual aboveground net primary production (ANPP) indicates that other factors constrain production. We generated a spatial and temporal database for annual aboveground net primary production and annual net N mineralization by linking a database of input variables (precipitation, temperature, and soils) with predictive models. We generated independent data sets of aboveground net primary production and net N mineralization by using regression models to predict aboveground net primary production, and the Century model to simulate net N mineralization. Our analyses indicate that net primary production and net N mineralization both increase with mean annual precipitation; thus, it is not possible to separate the extent to which ANPP is controlled by water or N availability. Nitrogen use efficiency (NUE) increased with increasing precipitation across the region. Aboveground net primary production decreased with increasing temperature across the region, while N mineralization increased slightly, leading to decreasing (NUE) with increasing temperature. At high precipitation levels, aboveground net primary production increased and N mineralization decreased slightly with increasing soil fineness. Nitrogen use efficiency generally increased with increasing pools of soil organic matter, likely because in grasslands, the proportion of recalcitrant organic matter increases with the total organic matter pools. A comparison of interannual variation in net N mineralization with average spatial variation indicated a high degree of inertia in the response of N availability to precipitation levels. Our simulation results as well as field results of Lauenroth and Sala (1992) raise important questions about the applicability of space-for-time substitutions when dealing with ecosystem function. The structure of the systems appears to provide important constraints on the temporal variability that are not evident in an analysis of spatial variability.
Palmer Amaranth Interference and Seed Production in Peanut
Studies were conducted to evaluate density-dependent effects of Palmer amaranth on weed and peanut growth and peanut yield. Palmer amaranth remained taller than peanut throughout the growing season and decreased peanut canopy diameter, although Palmer amaranth density did not affect peanut height. The rapid increase in Palmer amaranth height at Goldsboro correspondingly reduced the maximum peanut canopy diameter at that location, although the growth trends for peanut canopy diameter were similar for both locations. Palmer amaranth biomass was affected by weed density when grown with peanut. Peanut pod weight decreased linearly 2.89 kg/ha with each gram of increase in Palmer amaranth biomass per meter of crop row. Predicted peanut yield loss from season-long interference of one Palmer amaranth plant per meter of crop row was 28%. Palmer amaranth seed production was also described by the rectangular hyperbola model. At the highest density of 5.2 Palmer amaranth plants/m crop row, 1.2 billion Palmer amaranth seed/ha were produced. Nomenclature: Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA; peanut, Arachis hypogaea L. ‘Perry’.