Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
33 result(s) for "Burkom, Howard S."
Sort by:
Improving the Prediction of Persistent High Health Care Utilizers: Retrospective Analysis Using Ensemble Methodology
A small proportion of high-need patients persistently use the bulk of health care services and incur disproportionate costs. Population health management (PHM) programs often refer to these patients as persistent high utilizers (PHUs). Accurate PHU prediction enables PHM programs to better align scarce health care resources with high-need PHUs while generally improving outcomes. While prior research in PHU prediction has shown promise, traditional regression methods used in these studies have yielded limited accuracy. We are seeking to improve PHU predictions with an ensemble approach in a retrospective observational study design using insurance claim records. We defined a PHU as a patient with health care costs in the top 20% of all patients for 4 consecutive 6-month periods. We used 2013 claims data to predict PHU status in next 24 months. Our study population included 165,595 patients in the Johns Hopkins Health Care plan, with 8359 (5.1%) patients identified as PHUs in 2014 and 2015. We assessed the performance of several standalone machine learning methods and then an ensemble approach combining multiple models. The candidate ensemble with complement naïve Bayes and random forest layers produced increased sensitivity and positive predictive value (PPV; 49.0% and 50.3%, respectively) compared to logistic regression (46.8% and 46.1%, respectively). Our results suggest that ensemble machine learning can improve prediction of care management needs. Improved PPV implies reduced incorrect referral of low-risk patients. With the improved sensitivity/PPV balance of this approach, resources may be directed more efficiently to patients needing them most.
Syndromic Surveillance: Adapting Innovations to Developing Settings
The tools and strategies of syndromic surveillance, say the authors, hold promise for improving public health security in developing countries.
Evolution of Public Health Surveillance: Status and Recommendations
Remarks in this article stem from my last 18 years' work on surveillance system development at the Johns Hopkins University Applied Physics Laboratory, as consultant to the US Centers for Disease Control and Prevention, and as board member and research committee chair of the International Society for Disease Surveillance. Surveillance system proponents have cited routine situational awareness benefits,1 including tracking disease spread, all-hazard monitoring, rumor control, and clinical decision support. Recent funding from the Centers for Disease Control and Prevention has improved local health department capacity for timely data collection from health care providers. Individuals with upto-date expertise in all three categories are rare. [...]collaboration among staff with disparate backgrounds must repurpose information for surveillance from electronic health records and other sources in a technology-driven environment. A common collaboration challenge is specification of detection performance metrics, mandated in widely referenced publications on automated surveillance.3 In prospective health monitoring, a typical problem is to classify a day or other interval by whether a current incidence measure merits investigation for onset of a significant public health threat. More broadly, before decisions about the number of monitored outcomes, frequency of analysis, or spatial resolution of results, designers should account for the human and technology resources available to a health department and its chief public health concerns and requirements.5 Surveillance system design may thus be viewed as an optimization problem, suggesting enlistment of operations research analysts and sampling statisticians. [...]recent advances in biotechnology fields such as genomic surveillance and clinical laboratory science demonstrate the...
Assessing the Value of Unsupervised Clustering in Predicting Persistent High Health Care Utilizers: Retrospective Analysis of Insurance Claims Data
A high proportion of health care services are persistently utilized by a small subpopulation of patients. To improve clinical outcomes while reducing costs and utilization, population health management programs often provide targeted interventions to patients who may become persistent high users/utilizers (PHUs). Enhanced prediction and management of PHUs can improve health care system efficiencies and improve the overall quality of patient care. The aim of this study was to detect key classes of diseases and medications among the study population and to assess the predictive value of these classes in identifying PHUs. This study was a retrospective analysis of insurance claims data of patients from the Johns Hopkins Health Care system. We defined a PHU as a patient incurring health care costs in the top 20% of all patients' costs for 4 consecutive 6-month periods. We used 2013 claims data to predict PHU status in 2014-2015. We applied latent class analysis (LCA), an unsupervised clustering approach, to identify patient subgroups with similar diagnostic and medication patterns to differentiate variations in health care utilization across PHUs. Logistic regression models were then built to predict PHUs in the full population and in select subpopulations. Predictors included LCA membership probabilities, demographic covariates, and health utilization covariates. Predictive powers of the regression models were assessed and compared using standard metrics. We identified 164,221 patients with continuous enrollment between 2013 and 2015. The mean study population age was 19.7 years, 55.9% were women, 3.3% had ≥1 hospitalization, and 19.1% had 10+ outpatient visits in 2013. A total of 8359 (5.09%) patients were identified as PHUs in both 2014 and 2015. The LCA performed optimally when assigning patients to four probability disease/medication classes. Given the feedback provided by clinical experts, we further divided the population into four diagnostic groups for sensitivity analysis: acute upper respiratory infection (URI) (n=53,232; 4.6% PHUs), mental health (n=34,456; 12.8% PHUs), otitis media (n=24,992; 4.5% PHUs), and musculoskeletal (n=24,799; 15.5% PHUs). For the regression models predicting PHUs in the full population, the F1-score classification metric was lower using a parsimonious model that included LCA categories (F1=38.62%) compared to that of a complex risk stratification model with a full set of predictors (F1=48.20%). However, the LCA-enabled simple models were comparable to the complex model when predicting PHUs in the mental health and musculoskeletal subpopulations (F1-scores of 48.69% and 48.15%, respectively). F1-scores were lower than that of the complex model when the LCA-enabled models were limited to the otitis media and acute URI subpopulations (45.77% and 43.05%, respectively). Our study illustrates the value of LCA in identifying subgroups of patients with similar patterns of diagnoses and medications. Our results show that LCA-derived classes can simplify predictive models of PHUs without compromising predictive accuracy. Future studies should investigate the value of LCA-derived classes for predicting PHUs in other health care settings.
Combining Surveillance Systems: Effective Merging of U.S. Veteran and Military Health Data
The U.S. Department of Veterans Affairs (VA) and Department of Defense (DoD) had more than 18 million healthcare beneficiaries in 2011. Both Departments conduct individual surveillance for disease events and health threats. We performed joint and separate analyses of VA and DoD outpatient visit data from October 2006 through September 2010 to demonstrate geographic and demographic coverage, timeliness of influenza epidemic awareness, and impact on spatial cluster detection achieved from a joint VA and DoD biosurveillance platform. Although VA coverage is greater, DoD visit volume is comparable or greater. Detection of outbreaks was better in DoD data for 58% and 75% of geographic areas surveyed for seasonal and pandemic influenza, respectively, and better in VA data for 34% and 15%. The VA system tended to alert earlier with a typical H3N2 seasonal influenza affecting older patients, and the DoD performed better during the H1N1 pandemic which affected younger patients more than normal influenza seasons. Retrospective analysis of known outbreaks demonstrated clustering evidence found in separate DoD and VA runs, which persisted with combined data sets. The analyses demonstrate two complementary surveillance systems with evident benefits for the national health picture. Relative timeliness of reporting could be improved in 92% of geographic areas with access to both systems, and more information provided in areas where only one type of facility exists. Combining DoD and VA data enhances geographic cluster detection capability without loss of sensitivity to events isolated in either population and has a manageable effect on customary alert rates.
A Practitioner-Driven Research Agenda for Syndromic Surveillance
Syndromic surveillance has expanded since 2001 in both scope and geographic reach and has benefited from research studies adapted from numerous disciplines. The practice of syndromic surveillance continues to evolve rapidly. The International Society for Disease Surveillance solicited input from its global surveillance network on key research questions, with the goal of improving syndromic surveillance practice. A workgroup of syndromic surveillance subject matter experts was convened from February to June 2016 to review and categorize the proposed topics. The workgroup identified 12 topic areas in 4 syndromic surveillance categories: informatics, analytics, systems research, and communications. This article details the context of each topic and its implications for public health. This research agenda can help catalyze the research that public health practitioners identified as most important.
Biosurveillance applying scan statistics with multiple, disparate data sources
Researchers working on the Department of Defense Global Emerging Infections System (DoD-GEIS) pilot system, the Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE), have applied scan statistics for early outbreak detection using both traditional and nontraditional data sources. These sources include medical data indexed by International Classification of Disease, 9th Revision (ICD-9) diagnosis codes, as well as less-specific, but potentially timelier, indicators such as records of over-the-counter remedy sales and of school absenteeism. Early efforts employed the Kulldorff scan statistic as implemented in the SaTScan software of the National Cancer Institute. A key obstacle to this application is that the input data streams are typically based on time-varying factors, such as consumer behavior, rather than simply on the populations of the component subregions. We have used both modeling and recent historical data distributions to obtain background spatial distributions. Data analyses have provided guidance on how to condition and model input data to avoid excessive clustering. We have used this methodology in combining data sources for both retrospective studies of known outbreaks and surveillance of high-profile events of concern to local public health authorities. We have integrated the scan statistic capability into a Microsoft Access-based system in which we may include or exclude data sources, vary time windows separately for different data sources, censor data from subsets of individual providers or subregions, adjust the background computation method, and run retrospective or simulated studies.
Usefulness of Syndromic Data Sources for Investigating Morbidity Resulting From a Severe Weather Event
Objective: We evaluated emergency department (ED) data, emergency medical services (EMS) data, and public utilities data for describing an outbreak of carbon monoxide (CO) poisoning following a windstorm. Methods: Syndromic ED data were matched against previously collected chart abstraction data. We ran detection algorithms on selected time series derived from all 3 data sources to identify health events associated with the CO poisoning outbreak. We used spatial and spatiotemporal scan statistics to identify geographic areas that were most heavily affected by the CO poisoning event. Results: Of the 241 CO cases confirmed by chart review, 190 (78.8%) were identified in the syndromic surveillance data as exact matches. Records from the ED and EMS data detected an increase in CO-consistent syndromes after the storm. The ED data identified significant clusters of CO-consistent syndromes, including zip codes that had widespread power outages. Weak temporal gastrointestinal (GI) signals, possibly resulting from ingestion of food spoiled by lack of refrigeration, were detected in the ED data but not in the EMS data. Spatial clustering of GI-based groupings in the ED data was not detected. Conclusions: Data from this evaluation support the value of ED data for surveillance after natural disasters. Enhanced EMS data may be useful for monitoring a CO poisoning event, if these data are available to the health department promptly. (Disaster Med Public Health Preparedness. 2011;5:37-45)