Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
7 result(s) for "Burn, Robert Scott"
Sort by:
A2B Adenosine Receptors Regulate the Mucus Clearance Component of the Lung's Innate Defense System
Adenosine (ADO) signaling is altered in both asthma and chronic obstructive pulmonary disease, and the A(2B) adenosine receptor (A(2B)-R) may drive pulmonary inflammation. Accordingly, it has been proposed that specific inhibition of the A(2B)-R could treat inflammatory lung diseases. However, stimulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by ADO may be crucial in permitting the superficial epithelium to maintain airway surface liquid (ASL) volume, which is required to ensure hydrated and clearable mucus. Our goal was to determine which ADO receptor (ADO-R) underlies ASL volume regulation in bronchial epithelia. We used PCR techniques to determine ADO-R expression in bronchial epithelia and used nasal potential difference measurements, Ussing chambers studies, and XZ-confocal microscopy to look at Cl- secretion and ASL volume regulation. The A(2B)-R was the most highly expressed ADO-R in donor specimens of human bronchial epithelia, and inhibition of ADO-R in vivo prevented activation of CFTR. A(2B)-R was the only ADO-R detected in cultured human bronchial epithelial cells and inhibition of this receptor with specific A(2B)-R antagonists resulted in ASL height collapse and a failure to effect ASL height homeostasis. Removal of ADO with ADO deaminase and replacement with 5'N-ethylcarboxamide adenosine resulted in dose-dependent changes in ASL height, and suggested that the cell surface (ADO) may be in excess of 1 microM, which is sufficient to activate A(2B)-R. A(2B)-R are required for ASL volume homeostasis in human airways, and therapies directed at inhibiting A(2B)-R may lead to a cystic fibrosis-like phenotype with depleted ASL volume and mucus stasis.
A^sub 2B^ Adenosine Receptors Regulate the Mucus Clearance Component of the Lung's Innate Defense System
Adenosine (ADO) signaling is altered in both asthma and chronic obstructive pulmonary disease, and the A(2B) adenosine receptor (A(2B)-R) may drive pulmonary inflammation. Accordingly, it has been proposed that specific inhibition of the A(2B)-R could treat inflammatory lung diseases. However, stimulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by ADO may be crucial in permitting the superficial epithelium to maintain airway surface liquid (ASL) volume, which is required to ensure hydrated and clearable mucus. Our goal was to determine which ADO receptor (ADO-R) underlies ASL volume regulation in bronchial epithelia. We used PCR techniques to determine ADO-R expression in bronchial epithelia and used nasal potential difference measurements, Ussing chambers studies, and XZ-confocal microscopy to look at Cl- secretion and ASL volume regulation. The A(2B)-R was the most highly expressed ADO-R in donor specimens of human bronchial epithelia, and inhibition of ADO-R in vivo prevented activation of CFTR. A(2B)-R was the only ADO-R detected in cultured human bronchial epithelial cells and inhibition of this receptor with specific A(2B)-R antagonists resulted in ASL height collapse and a failure to effect ASL height homeostasis. Removal of ADO with ADO deaminase and replacement with 5'N-ethylcarboxamide adenosine resulted in dose-dependent changes in ASL height, and suggested that the cell surface (ADO) may be in excess of 1 microM, which is sufficient to activate A(2B)-R. A(2B)-R are required for ASL volume homeostasis in human airways, and therapies directed at inhibiting A(2B)-R may lead to a cystic fibrosis-like phenotype with depleted ASL volume and mucus stasis.