Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
563 result(s) for "Burrows, P N"
Sort by:
Dermoscopy for melanoma detection and triage in primary care: a systematic review
ObjectiveMost skin lesions first present in primary care, where distinguishing rare melanomas from benign lesions can be challenging. Dermoscopy improves diagnostic accuracy among specialists and is promoted for use by primary care physicians (PCPs). However, when used by untrained clinicians, accuracy may be no better than visual inspection. This study aimed to undertake a systematic review of literature reporting use of dermoscopy to triage suspicious skin lesions in primary care settings, and challenges for implementation.DesignA systematic literature review and narrative synthesis.Data sourcesWe searched MEDLINE, Cochrane Central, EMBASE, Cumulative Index to Nursing and Allied Health Literature, and SCOPUS bibliographic databases from 1 January 1990 to 31 December 2017, without language restrictions.Inclusion criteriaStudies including assessment of dermoscopy accuracy, acceptability to patients and PCPs, training requirements, and cost-effectiveness of dermoscopy modes in primary care, including trials, diagnostic accuracy and acceptability studies.Results23 studies met the review criteria, representing 49 769 lesions and 3708 PCPs, all from high-income countries. There was a paucity of studies set truly in primary care and the outcomes measured were diverse. The heterogeneity therefore made meta-analysis unfeasible; the data were synthesised through narrative review. Dermoscopy, with appropriate training, was associated with improved diagnostic accuracy for melanoma and benign lesions, and reduced unnecessary excisions and referrals. Teledermoscopy-based referral systems improved triage accuracy. Only three studies examined cost-effectiveness; hence, there was insufficient evidence to draw conclusions. Costs, training and time requirements were considered important implementation barriers. Patient satisfaction was seldom assessed. Computer-aided dermoscopy and other technological advances have not yet been tested in primary care.ConclusionsDermoscopy could help PCPs triage suspicious lesions for biopsy, urgent referral or reassurance. However, it will be important to establish further evidence on minimum training requirements to reach competence, as well as the cost-effectiveness and patient acceptability of implementing dermoscopy in primary care.Trial registration numberCRD42018091395.
High-resolution, low-latency, bunch-by-bunch feedback system for nanobeam stabilization
We report the design, operation, and performance of a high-resolution, low-latency, bunch-by-bunch feedback system for nanobeam stabilization. The system employs novel, ultralow quality-factor cavity beam position monitors (BPMs), a two-stage analog signal down-mixing system, and a digital signal processing and feedback board incorporating a field-programmable gate array. The field-programmable gate array firmware allows for the real-time integration of up to fifteen samples of the BPM waveforms within a measured latency of 232 ns. We show that this real-time sample integration improves significantly the beam position resolution and, consequently, the feedback performance. The best demonstrated real-time beam position resolution was 19 nm, which, as far as we are aware, is the best real-time resolution achieved in any operating BPM system. The feedback was operated in two complementary modes to stabilize the vertical position of the ultrasmall beam produced at the focal point of the ATF2 beamline at KEK. In single-BPM feedback mode, beam stabilization to50±5nmwas demonstrated. In two-BPM feedback mode, beam stabilization to41±4nmwas achieved.
Design and operation of transfer lines for plasma wakefield accelerators using numerical optimizers
The Advanced Wakefield (AWAKE) Experiment is a proof-of-principle experiment demonstrating the acceleration of electron beams via proton-driven plasma wakefield acceleration. AWAKE Run 2 aims to build on the results of Run 1 by achieving higher energies with an improved beam quality. As part of the upgrade to Run 2, the existing proton and electron beamlines will be adapted and a second plasma cell and new 150-MeV electron beamline will be added. The specification for this new 150-MeV beamline will be challenging as it will be required to inject electron bunches with micron-level beam size and stability into the second plasma cell while being subject to tight spatial constraints. In this paper, we describe the techniques used (e.g., numerical optimizers and genetic algorithms) to produce the design of this electron line. We present a comparison of the methods used in this paper with other optimization algorithms commonly used within accelerator physics. Operational techniques are also studied including steering and alignment methods utilizing numerical optimizers and beam measurement techniques employing neural networks. We compare the performance of algorithms for online optimization and beam-based alignment in terms of their efficiency and effectiveness.
Luminosity performance of the Compact Linear Collider at 380 GeV with static and dynamic imperfections
The Compact Linear Collider is one of the two main European options for a collider in a post Large Hadron Collider era. This is a lineare+e−collider with three center-of-mass energy stages: 380 GeV, 1.5 TeV, and 3 TeV. The luminosity performance of the first stage at 380 GeV is presented including the impact of static and dynamic imperfections. These calculations are performed with fully realistic tracking simulations from the exit of the damping rings to the interaction point and including beam-beam effects in the collisions. A luminosity of4.3×1034cm−2s−1can be achieved with a perfect collider, which is almost three times the nominal luminosity target of1.5×1034cm−2s−1. In simulations with static imperfections, a luminosity of2.35×1034cm−2s−1or greater is achieved by 90% of randomly misaligned colliders. Expressed as a percentage of the nominal luminosity target, this is a surplus of approximately 57%. Including the impact of ground motion, a luminosity surplus of 53% or greater can be expected for 90% of colliders. The average expected luminosity is2.8×1034cm−2s−1, which is almost twice the nominal luminosity target.
Measurements and modeling of stray magnetic fields and the simulation of their impact on the Compact Linear Collider at 380 GeV
The Compact Linear Collider (CLIC) targets a nanometer beam size at the collision point. Realizing this beam size requires the generation and transport of ultralow emittance beams. Dynamic imperfections can deflect the colliding beams, leading to a collision with a relative offset. They can also degrade the emittance of each beam. Both of these effects can significantly impact the luminosity of CLIC. In this paper, we examine a newly considered dynamic imperfection: stray magnetic fields. Measurements of stray magnetic fields in the Large Hadron Collider tunnel are presented and used to develop a statistical model that can be used to realistically generate stray magnetic fields in simulations. The model is used in integrated simulations of CLIC at 380 GeV including mitigation systems for stray magnetic fields to evaluate their impact on luminosity.
Compact Linear Collider drive beam phase stabilization simulations
The drive beam phase stability is one of the critical feasibility issues of the Compact Linear Collider (CLIC) project. This paper presents a step-by-step analysis of the error propagation through the CLIC drive beam complex using realistic rf potential and beam loading amplitude functions for the drive and main beam accelerating structures. The impact of planned stabilization systems for drive beam bunch charge and longitudinal phase is simulated and the optimal specifications for such systems are calculated and discussed.
Wakefields in a cluster plasma
We report the first comprehensive study of large amplitude Langmuir waves in a plasma of nanometer-scale clusters. Using an oblique angle single-shot frequency domain holography diagnostic, the shape of these wakefields is captured for the first time. The wavefronts are observed to curve backwards, in contrast to the forwards curvature of wakefields in uniform plasma. Due to the expansion of the clusters, the first wakefield period is longer than those trailing it. The features of the data are well described by fully relativistic two-dimensional particle-in-cell simulations and by a quasianalytic solution for a one-dimensional, nonlinear wakefield in a cluster plasma.
Design and operation of a prototype interaction point beam collision feedback system for the International Linear Collider
A high-resolution, intratrain position feedback system has been developed to achieve and maintain collisions at the proposed future electron-positron International Linear Collider (ILC). A prototype has been commissioned and tested with a beam in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. It consists of a stripline beam position monitor (BPM) with analogue signal-processing electronics, a custom digital board to perform the feedback calculation, and a stripline kicker driven by a high-current amplifier. The closed-loop feedback latency is 148 ns. For a three-bunch train with 154 ns bunch spacing, the feedback system has been used to stabilize the third bunch to 450 nm. The kicker response is linear, and the feedback performance is maintained, over a correction range of over±60μm. The propagation of the correction has been confirmed by using an independent stripline BPM located downstream of the feedback system. The system has been demonstrated to meet the BPM resolution, beam kick, and latency requirements for the ILC.
Design and performance of a high resolution, low latency stripline beam position monitor system
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6±0.1ns . A single-pass beam position resolution of 291±10nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
Stabilization of the arrival time of a relativistic electron beam to the 50 fs level
We report the results of a low-latency beam phase feed-forward system built to stabilize the arrival time of a relativistic electron beam. The system was operated at the Compact Linear Collider (CLIC) Test Facility (CTF3) at CERN where the beam arrival time was stabilized to approximately 50 fs. The system latency was 350 ns and the correction bandwidth>23MHz. The system meets the requirements for CLIC.