Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
143
result(s) for
"Burslem, David"
Sort by:
Soil fungal networks maintain local dominance of ectomycorrhizal trees
2020
The mechanisms regulating community composition and local dominance of trees in species-rich forests are poorly resolved, but the importance of interactions with soil microbes is increasingly acknowledged. Here, we show that tree seedlings that interact via root-associated fungal hyphae with soils beneath neighbouring adult trees grow faster and have greater survival than seedlings that are isolated from external fungal mycelia, but these effects are observed for species possessing ectomycorrhizas (ECM) and not arbuscular mycorrhizal (AM) fungi. Moreover, survival of naturally-regenerating AM seedlings over ten years is negatively related to the density of surrounding conspecific plants, while survival of ECM tree seedlings displays positive density dependence over this interval, and AM seedling roots contain greater abundance of pathogenic fungi than roots of ECM seedlings. Our findings show that neighbourhood interactions mediated by beneficial and pathogenic soil fungi regulate plant demography and community structure in hyperdiverse forests.
Associations with mycorrhizal fungi can affect the outcome of plant competition in complex ways. Here the authors use a decade-long field survey and two hyphal exclusion experiments to reveal a critical role of underground fungal networks in facilitating seedling growth and fitness of ectomycorrhizal plants but not arbuscular mycorrhizal plants.
Journal Article
Ecological information from spatial patterns of plants: insights from point process theory
by
Law, Richard
,
Gunatilleke, C. V. S.
,
Illian, Janine
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Biological and medical sciences
2009
1. This article reviews the application of some summary statistics from current theory of spatial point processes for extracting information from spatial patterns of plants. Theoretical measures and issues connected with their estimation are described. Results are illustrated in the context of specific ecological questions about spatial patterns of trees in two forests. 2. The pair correlation function, related to Ripley's K function, provides a formal measure of the density of neighbouring plants and makes precise the general notion of a 'plant's-eye' view of a community. The pair correlation function can also be used to describe spatial relationships of neighbouring plants with different qualitative properties, such as species identity and size class. 3. The mark correlation function can be used to describe the spatial relationships of quantitative measures (e.g. biomass). We discuss two types of correlation function for quantitative marks. Applying these functions to the distribution of biomass in a temperate forest, it is shown that the spatial pattern of biomass is uncoupled from the spatial pattern of plant locations. 4. The inhomogeneous pair correlation function enables first-order heterogeneity in the environment to be removed from second-order spatial statistics. We illustrate this for a tree species in a forest of high topographic heterogeneity and show that spatial aggregation remains after allowing for spatial variation in density. An alternative method, the master function, takes a weighted average of homogeneous pair correlation functions computed in subareas; when applied to the same data and compared with the former method, the spatial aggregations are smaller in size. 5. Synthesis. These spatial statistics, especially those derived from pair densities, will help ecologists to extract important ecological information from intricate spatially correlated plants in populations and communities.
Journal Article
Soil fungal networks moderate density-dependent survival and growth of seedlings
by
Fang, Miao
,
Liang, Minxia
,
Shi, Liuqing
in
Abundance
,
adults
,
arbuscular mycorrhizal (AM) fungi
2021
• Pathogenic and mutualistic fungi have contrasting effects on seedling establishment, but it remains unclear whether density-dependent survival and growth are regulated by access to different types of mycorrhizal fungal networks supported by neighbouring adult trees.
• Here, we conducted an extensive field survey to test how mycorrhizal and pathogenic fungal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) seedlings in a subtropical forest respond to density of neighbouring adult trees. In addition, we undertook a hyphal exclusion experiment to explicitly test the role of soil fungal networks in driving density- dependent effects on seedling growth and survival.
• Conspecific adult density was a strong predictor for the relative abundance of putative pathogens, which was greater in roots of AM than of ECM seedlings, while mycorrhizal fungal abundance and colonization were not consistently affected by conspecific adult density. Both ECM and AM fungal networks counteracted conspecific density-dependent mortality, but ECM fungi were more effective at weakening the negative effects of high seedling density than AM fungi.
• Our findings reveal a critical role of common fungal networks in mitigating negative density- dependent effects of pathogenic fungi on seedling establishment, which provides mechanistic insights into how soil fungal diversity shapes plant community structure in subtropical forests.
Journal Article
Contrasting nonstructural carbohydrate dynamics of tropical tree seedlings under water deficit and variability
by
Caduff, Alexa
,
Burslem, David F. R. P
,
Tay, John
in
Adaptation, Physiological
,
Carbohydrate Metabolism
,
Carbohydrates
2015
Drought regimes can be characterized by the variability in the quantity of rainfall and the duration of rainless periods. However, most research on plant response to drought has ignored the impacts of rainfall variation, especially with regard to the influence of nonstructural carbohydrates (NSCs) in promoting drought resistance. To test the hypothesis that these components of drought differentially affect NSC dynamics and seedling resistance, we tracked NSC in plant tissues of tropical tree seedlings in response to manipulations of the volume and frequency of water applied. NSC concentrations decreased in woody tissues under infrequent–high watering but increased under no watering. A faster decline of growth relative to stomatal conductance in the no watering treatment was consistent with NSC accumulation as a result of an uncoupling of growth and photosynthesis, while usage of stored NSCs in woody tissues to maintain function may account for the NSC decline under infrequent–high watering. NSCs, and specifically stem NSCs, contributed to drought resistance under severe water deficits, while NSCs had a less clear role in drought resistance to variability in water availability. The contrasting response of NSCs to water variability and deficit indicates that unique processes support seedling resistance to these components of drought.
Journal Article
Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion
by
Hulme, Philip E.
,
Dawson, Wayne
,
Burslem, David F. R. P.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
animals
2009
1. Understanding why some alien plant species become invasive when others fail is a fundamental goal in invasion ecology. We used detailed historical planting records of alien plant species introduced to Amani Botanical Garden, Tanzania and contemporary surveys of their invasion status to assess the relative ability of phylogeny, propagule pressure, residence time, plant traits and other factors to explain the success of alien plant species at different stages of the invasion process. 2. Species with native ranges centred in the tropics and with larger seeds were more likely to regenerate, whereas naturalization success was explained by longer residence time, faster growth rate, fewer seeds per fruit, smaller seed mass and shade tolerance. 3. Naturalized species spreading greater distances from original plantings tended to have more seeds per fruit, whereas species dispersed by canopy-feeding animals and with native ranges centred on the tropics tended to have spread more widely in the botanical garden. Species dispersed by canopy-feeding animals and with greater seed mass were more likely to be established in closed forest. 4. Phylogeny alone made a relatively minor contribution to the explanatory power of statistical models, but a greater proportion of variation in spread within the botanical garden and in forest establishment was explained by phylogeny alone than for other models. Phylogeny jointly with variables also explained a greater proportion of variation in forest establishment than in other models. Phylogenetic correction weakened the importance of dispersal syndrome in explaining compartmental spread, seed mass in the forest establishment model, and all factors except for growth rate and residence time in the naturalization model. 5. Synthesis. This study demonstrates that it matters considerably how invasive species are defined when trying to understand the relative ability of multiple variables to explain invasion success. By disentangling different invasion stages and using relatively objective criteria to assess species status, this study highlights that relatively simple models can help to explain why some alien plants are able to naturalize, spread and even establish in closed tropical forests.
Journal Article
External aluminium supply regulates photosynthesis and carbon partitioning in the Al-accumulating tropical shrub Melastoma malabathricum
by
Weitz, Hedda
,
Mahmud, Khairil
,
H. Kritzler, Ully
in
Aluminum
,
Aluminum - analysis
,
Biology and Life Sciences
2024
Aluminium (Al) is toxic to most plants, but recent research has suggested that Al addition may stimulate growth and nutrient uptake in some species capable of accumulating high tissue Al concentrations. The physiological basis of this growth response is unknown, but it may be associated with processes linked to the regulation of carbon assimilation and partitioning by Al supply. To test alternative hypotheses for the physiological mechanism explaining this response, we examined the effects of increasing Al concentrations in the growth medium on tissue nutrient concentrations and carbon assimilation in two populations of the Al-accumulator Melastoma malabathricum . Compared to seedlings grown in a control nutrient solution containing no Al, mean rates of photosynthesis and respiration increased by 46% and 27%, respectively, total non-structural carbohydrate concentrations increased by 45%, and lignin concentration in roots decreased by 26% when seedlings were grown in a nutrient solution containing 2.0 mM Al. The concentrations of P, Ca and Mg in leaves and stems increased by 31%, 22%, and 26%, respectively, in response to an increase in nutrient solution Al concentration from 0 to 2.0 mM. Elemental concentrations in roots increased for P (114%), Mg (61%) and K (5%) in response to this increase in Al concentration in the nutrient solution. Plants derived from an inherently faster-growing population had a greater relative increase in final dry mass, net photosynthetic and respiration rates and total non-structural carbohydrate concentrations in response to higher external Al supply. We conclude that growth stimulation by Al supply is associated with increases in photosynthetic and respiration rates and enhanced production of non-structural carbohydrates that are differentially allocated to roots, as well as stimulation of nutrient uptake. These responses suggest that internal carbon assimilation is up-regulated to provide the necessary resources of non-structural carbohydrates for uptake, transport and storage of Al in Melastoma malabathricum . This physiological mechanism has only been recorded previously in one other plant species, Camellia sinensis , which last shared a common ancestor with M . malabathricum more than 120 million years ago.
Journal Article
Tropical forests post-logging are a persistent net carbon source to the atmosphere
by
Cruz, Rudi
,
Huasco, Walter Huaraca
,
Mills, Maria B.
in
Atmosphere
,
Biological Sciences
,
Biomass
2023
Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO₂ exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha−1 yr−1 within moderately logged plots and 5.23 ± 1.23 Mg C ha−1 yr−1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world’s tropical forests may be considerably lower than currently estimated.
Journal Article
Linking functional traits to multiscale statistics of leaf venation networks
by
Xu, Hao
,
Burslem, David F.R.P.
,
Jodra, Miguel
in
Axes (reference lines)
,
Circularity
,
Computer architecture
2020
• Leaf venation networks evolved along several functional axes, including resource transport, damage resistance, mechanical strength, and construction cost. Because functions may depend on architectural features at different scales, network architecture may vary across spatial scales to satisfy functional tradeoffs.
• We develop a framework for quantifying network architecture with multiscale statistics describing elongation ratios, circularity ratios, vein density, and minimum spanning tree ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in samples of up to 2 cm², pairing multiscale statistics with traits representing axes of resource transport, damage resistance, mechanical strength, and cost.
• We show that these multiscale statistics clearly differentiate species’ architecture and delineate a phenotype space that shifts at larger scales; functional linkages vary with scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio linked to mechanical strength (measured by force to punch) and elongation ratio and circularity ratio linked to damage resistance (measured by tannins); and phylogenetic conservatism of network architecture is low but scale-dependent.
• This work provides tools to quantify the function and evolution of venation networks. Future studies including primary and secondary veins may uncover additional insights.
Journal Article