Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
67 result(s) for "Butchart, Stuart HM"
Sort by:
The broad footprint of climate change from genes to biomes to people
Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science , this issue p. 10.1126/science.aaf7671 Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.
Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis
1. There are wide reports of advances in the timing of spring migration of birds over time and in relation to rising temperatures, though phenological responses vary substantially within and among species. An understanding of the ecological, life-history and geographic variables that predict this intra- and interspecific variation can guide our projections of how populations and species are likely to respond to future climate change. 2. Here, we conduct phylogenetic meta-analyses addressing slope estimates of the timing of avian spring migration regressed on (i) year and (ii) temperature, representing a total of 413 species across five continents. We take into account slope estimation error and examine phylogenetic, ecological and geographic predictors of intra- and interspecific variation. 3. We confirm earlier findings that on average birds have significantly advanced their spring migration time by 2-1 days per decade and 1-2 days °C⁻¹. We find that over time and in response to warmer spring conditions, short-distance migrants have advanced spring migratory phenology by more than long-distance migrants. We also find that larger bodied species show greater advance over time compared to smaller bodied species. Our results did not reveal any evidence that interspecific variation in migration response is predictable on the basis of species' habitat or diet. 4. We detected a substantial phylogenetic signal in migration time in response to both year and temperature, suggesting that some of the shifts in migratory phenological response to climate are predictable on the basis of phylogeny. However, we estimate high levels of species and spatial variance relative to phylogenetic variance, which is consistent with plasticity in response to climate evolving fairly rapidly and being more influenced by adaptation to current local climate than by common descent. 5. On average, avian spring migration times have advanced over time and as spring has become warmer. While we are able to identify predictors that explain some of the true among-species variation in response, substantial intra- and interspecific variation in migratory response remains to be explained.
Protected areas and global conservation of migratory birds
Migratory species depend on a suite of interconnected sites. Threats to unprotected links in these chains of sites are driving rapid population declines of migrants around the world, yet the extent to which different parts of the annual cycle are protected remains unknown. We show that just 9% of 1451 migratory birds are adequately covered by protected areas across all stages of their annual cycle, in comparison with 45% of nonmigratory birds. This discrepancy is driven by protected area placement that does not cover the full annual cycle of migratory species, indicating that global efforts toward coordinated conservation planning for migrants are yet to bear fruit. Better-targeted investment and enhanced coordination among countries are needed to conserve migratory species throughout their migratory cycle.
Protected Areas and Effective Biodiversity Conservation
Increasing the collective contribution of protected areas toward preventing species extinctions requires the strategic allocation of management efforts. Although protected areas (PAs) cover 13% of Earth's land ( 1 ), substantial gaps remain in their coverage of global biodiversity ( 2 ). Thus, there has been emphasis on strategic expansion of the global PA network ( 3 – 5 ). However, because PAs are often understaffed, underfunded, and beleaguered in the face of external threats ( 6 , 7 ), efforts to expand PA coverage should be complemented by appropriate management of existing PAs. Previous calls for enhancing PA management have focused on improving operational effectiveness of each PA [e.g., staffing and budgets ( 6 )]. Little guidance has been offered on how to improve collective effectiveness for meeting global biodiversity conservation goals ( 3 ). We provide guidance for strategically allocating management efforts among and within existing PAs to strengthen their collective contribution toward preventing global species extinctions.
Ecological and socio-economic factors affecting extinction risk in parrots
Parrots (Psittaciformes) are among the most threatened bird orders with 28 % (111 of 398) of extant species classified as threatened under IUCN criteria. We confirmed that parrots have a lower Red List Index (higher aggregate extinction risk) than other comparable bird groups, and modeled the factors associated with extinction risk. Our analyses included intrinsic biological, life history and ecological attributes, external anthropogenic threats, and socio-economic variables associated with the countries where the parrot species occur, while we controlled for phylogenetic dependence among species. We found that the likelihood of parrot species being classified as threatened was less for species with larger historical distribution size, but was greater for species with high forest dependency, large body size, long generation time, and greater proportion of the human population living in urban areas in the countries encompassing the parrots’ home ranges. The severity of extinction risk (from vulnerable to critically endangered) was positively related to the per capita gross domestic product (GDP) of the countries of occurrence, endemism to a single country, and lower for species used as pets. A disproportionate number of 16 extinct parrot species were endemic to islands and single countries, and were large bodied, habitat specialists. Agriculture, hunting, trapping, and logging are the most frequent threats to parrots worldwide, with variation in importance among regions. We use multiple methods to rank countries with disproportionately high numbers of threatened parrot species. Our results promote understanding of global and regional factors associated with endangerment in this highly threatened taxonomic group, and will enhance the prioritization of conservation actions.
Global indicators of biological invasion: species numbers, biodiversity impact and policy responses
Invasive alien species (IAS) pose a significant threat to biodiversity. The Convention on Biological Diversity's 2010 Biodiversity Target, and the associated indicator for IAS, has stimulated globally coordinated efforts to quantify patterns in the extent of biological invasion, its impact on biodiversity and policy responses. Here, we report on the outcome of indicators of alien invasion at a global scale. Global. We developed four indicators in a pressure-state-response framework, i.e. number of documented IAS (pressure), trends in the impact of IAS on biodiversity (state) and trends in international agreements and national policy adoption relevant to reducing IAS threats to biodiversity (response). These measures were considered best suited to providing globally representative, standardized and sustainable indicators by 2010. We show that the number of documented IAS is a significant underestimate, because its value is negatively affected by country development status and positively by research effort and information availability. The Red List Index demonstrates that IAS pressure is driving declines in species diversity, with the overall impact apparently increasing. The policy response trend has nonetheless been positive for the last several decades, although only half of countries that are signatory to the Convention on Biological Diversity (CBD) have IAS-relevant national legislation. Although IAS pressure has apparently driven the policy response, this has clearly not been sufficient and/or adequately implemented to reduce biodiversity impact. For this indicator of threat to biodiversity, the 2010 Biodiversity Target has thus not been achieved. The results nonetheless provide clear direction for bridging the current divide between information available on IAS and that needed for policy and management for the prevention and control of IAS. It further highlights the need for measures to ensure that policy is effectively implemented, such that it translates into reduced IAS pressure and impact on biodiversity beyond 2010.
Biodiversity Conservation: Challenges Beyond 2010
The continued growth of human populations and of per capita consumption have resulted in unsustainable exploitation of Earth's biological diversity, exacerbated by climate change, ocean acidification, and other anthropogenic environmental impacts. We argue that effective conservation of biodiversity is essential for human survival and the maintenance of ecosystem processes. Despite some conservation successes (especially at local scales) and increasing public and government interest in living sustainably, biodiversity continues to decline. Moving beyond 2010, successful conservation approaches need to be reinforced and adequately financed. In addition, however, more radical changes are required that recognize biodiversity as a global public good, that integrate biodiversity conservation into policies and decision frameworks for resource production and consumption, and that focus on wider institutional and societal changes to enable more effective implementation of policy.
Invasive mammal eradication on islands results in substantial conservation gains
More than US$21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List—6% of all these highly threatened species—likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the world’s most imperiled fauna.
Standard Lexicon for Biodiversity Conservation: Unified Classifications of Threats and Actions
An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross-project learning and the development of a systematic science of conservation.
A mid-term analysis of progress toward international biodiversity targets
In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related “Aichi Targets” to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress.