Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
131
result(s) for
"Byrne, Dominic"
Sort by:
Rare GATA6 variants associated with risk of congenital heart disease phenotypes in 200,000 UK Biobank exomes
by
Keavney, Bernard D
,
Williams, Simon G
,
Byrne Dominic J F
in
Biobanks
,
Cardiovascular disease
,
Congenital diseases
2022
Congenital heart disease (CHD) has a complex and largely uncharacterised genetic etiology. Using 200,000 UK Biobank (UKB) exomes, we assess the burden of ultra-rare, potentially pathogenic variants in the largest case/control cohort of predominantly mild CHD to date. We find an association with GATA6, a member of the GATA family of transcription factors that play an important role during heart development and has been linked with several CHD phenotypes previously. Several identified GATA6 variants are previously unreported and their roles in conferring risk to CHD warrants further study. We demonstrate that despite limitations regarding detailed familial phenotype information in large-scale biobank projects, through careful consideration of case and control cohorts it is possible to derive important associations.
Journal Article
Evaluating Caveolin Interactions: Do Proteins Interact with the Caveolin Scaffolding Domain through a Widespread Aromatic Residue-Rich Motif?
by
Rigden, Daniel J.
,
Byrne, Dominic P.
,
Dart, Caroline
in
Acids
,
Alzheimer's disease
,
Alzheimers disease
2012
Caveolins are coat proteins of caveolae, small flask-shaped pits of the plasma membranes of most cells. Aside from roles in caveolae formation, caveolins recruit, retain and regulate many caveolae-associated signalling molecules. Caveolin-protein interactions are commonly considered to occur between a ∼20 amino acid region within caveolin, the caveolin scaffolding domain (CSD), and an aromatic-rich caveolin binding motif (CBM) on the binding partner (фXфXXXXф, фXXXXфXXф or фXфXXXXфXXф, where ф is an aromatic and X an unspecified amino acid). The CBM resembles a typical linear motif--a short, simple sequence independently evolved many times in different proteins for a specific function. Here we exploit recent improvements in bioinformatics tools and in our understanding of linear motifs to critically examine the role of CBMs in caveolin interactions. We find that sequences conforming to the CBM occur in 30% of human proteins, but find no evidence for their statistical enrichment in the caveolin interactome. Furthermore, sequence- and structure-based considerations suggest that CBMs do not have characteristics commonly associated with true interaction motifs. Analysis of the relative solvent accessible area of putative CBMs shows that the majority of their aromatic residues are buried within the protein and are thus unlikely to interact directly with caveolin, but may instead be important for protein structural stability. Together, these findings suggest that the canonical CBM may not be a common characteristic of caveolin-target interactions and that interfaces between caveolin and targets may be more structurally diverse than presently appreciated.
Journal Article
Significantly increased risk of chronic obstructive pulmonary disease amongst adults with predominantly mild congenital heart disease
by
Vestbo, Jørgen
,
Williams, Simon G.
,
Talavera, David
in
631/114
,
692/699/1785/4037
,
692/699/75/1539
2022
Adults with congenital heart disease (CHD) face increased risk of various comorbid diseases. Previous work on lung dysfunction in this population has mainly focused on restrictive lung disease, in patients with severe CHD phenotypes. We examined the association of mild CHD with chronic obstructive pulmonary disease (COPD) in the UK Biobank (UKB). Electronic health records (EHR) were used to identify 3385 CHD cases and 479,765 healthy controls in UKB, before performing a case–control analysis over a 20-year study period for a total of > 9.5 M person-years of follow-up. Our analysis showed that UKB participants with CHD are at substantially greater risk of developing COPD than healthy controls (8.7% vs 3.1% prevalence, unadjusted OR 2.98, 95% CI 2.63, 3.36, P = 1.40e−53). Slightly increased rates of smoking were observed amongst CHD cases, however the association with COPD was shown to be robust to adjustment for smoking and other factors known to modulate COPD risk within a multivariable-adjusted Cox regression framework (fully adjusted HR 2.21, 95% CI 1.97, 2.48, P = 5.5e−41). Care for adults with CHD should aim to mitigate their increased risk of COPD, possibly via increased smoking cessation support.
Journal Article
Local protein kinase A action proceeds through intact holoenzymes
by
Vonderach, Matthias
,
Eyers, Claire E.
,
Scott, John D.
in
A Kinase Anchor Proteins - metabolism
,
Activation
,
Adenosine
2017
Hormones can transmit signals through adenosine 3ʹ,5ʹ-monophosphate (cAMP) to precise intracellular locations. The fidelity of these responses relies on the activation of localized protein kinase A (PKA) holoenzymes. Association of PKA regulatory type II (RII) subunits with A-kinase–anchoring proteins (AKAPs) confers location, and catalytic (C) subunits phosphorylate substrates. Single-particle electron microscopy demonstrated that AKAP79 constrains RII-C subassemblies within 150 to 250 angstroms of its targets. Native mass spectrometry established that these macromolecular assemblies incorporated stoichiometric amounts of cAMP. Chemical-biology– and live cell–imaging techniques revealed that catalytically active PKA holoenzymes remained intact within the cytoplasm. These findings indicate that the parameters of anchored PKA holoenzyme action are much more restricted than originally anticipated.
Journal Article
BH3-only proteins are dispensable for apoptosis induced by pharmacological inhibition of both MCL-1 and BCL-XL
by
Eyers, Patrick A
,
Butterworth, Michael
,
Greaves, Georgia
in
Apoptosis
,
Bax protein
,
Bcl-2 protein
2019
The impressive selectivity and efficacy of BH3 mimetics for treating cancer has largely been limited to BCL-2 dependent hematological malignancies. Most solid tumors depend on other anti-apoptotic proteins, including MCL-1, for survival. The recent description of S63845 as the first specific and potent MCL-1 inhibitor represents an important therapeutic advance, since MCL-1 is not targeted by the currently available BH3 mimetics, Navitoclax or Venetoclax, and is commonly associated with chemoresistance. In this study, we confirm a high binding affinity and selectivity of S63845 to induce apoptosis in MCL-1-dependent cancer cell lines. Furthermore, S63845 synergizes with other BH3 mimetics to induce apoptosis in cell lines derived from both hematological and solid tumors. Although the anti-apoptotic BCL-2 family members in these cell lines interact with a spectrum of pro-apoptotic BH3-only proteins to regulate apoptosis, these interactions alone do not explain the relative sensitivities of these cell lines to BH3 mimetic-induced apoptosis. These findings necessitated further investigation into the requirement of BH3-only proteins in BH3 mimetic-mediated apoptosis. Concurrent inhibition of BCL-XL and MCL-1 by BH3 mimetics in colorectal HCT116 cells induced apoptosis in a BAX- but not BAK-dependent manner. Remarkably this apoptosis was independent of all known BH3-only proteins. Although BH3-only proteins were required for apoptosis induced as a result of BCL-XL inhibition, this requirement was overcome when both BCL-XL and MCL-1 were inhibited, implicating distinct mechanisms by which different anti-apoptotic BCL-2 family members may regulate apoptosis in cancer.
Journal Article
A single sulfatase is required to access colonic mucin by a gut bacterium
by
Baslé, Arnaud
,
Oscarson, Stefan
,
Glowacki, Robert W. P.
in
631/326/1320
,
631/326/325/2482
,
631/45/221
2021
Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium
1
. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex
O
-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin
O
-glycans by the human gut symbiont
Bacteroides thetaiotaomicron
. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in
O
-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated
O
-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization
2
and diseases such as inflammatory bowel disease
3
.
A single sulfatase produced by a bacterium found in the human colon is essential for degradation of sulfated
O
-glycans in secreted mucus.
Journal Article
HmuY Haemophore and Gingipain Proteases Constitute a Unique Syntrophic System of Haem Acquisition by Porphyromonas gingivalis
by
Sroka, Aneta
,
Byrne, Dominic P.
,
Potempa, Jan
in
Adhesins, Bacterial - chemistry
,
Adhesins, Bacterial - metabolism
,
Adhesins, Bacterial - physiology
2011
Haem (iron protoporphyrin IX) is both an essential growth factor and virulence regulator for the periodontal pathogen Porphyromonas gingivalis, which acquires it mainly from haemoglobin via the sequential actions of the R- and K-specific gingipain proteases. The haem-binding lipoprotein haemophore HmuY and its cognate receptor HmuR of P. gingivalis, are responsible for capture and internalisation of haem. This study examined the role of the HmuY in acquisition of haem from haemoglobin and the cooperation between HmuY and gingipain proteases in this process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to wrest haem from immobilised methaemoglobin and deoxyhaemoglobin. Haem extraction from oxyhaemoglobin was facilitated after oxidation to methaemoglobin by pre-treatment with the P. gingivalis R-gingipain A (HRgpA). HmuY was also capable of scavenging haem from oxyhaemoglobin pre-treated with the K-gingipain (Kgp). This is the first demonstration of a haemophore working in conjunction with proteases to acquire haem from haemoglobin. In addition, HmuY was able to extract haem from methaemalbumin, and could bind haem, either free in solution or from methaemoglobin, even in the presence of serum albumin.
Journal Article
Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota
2022
Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.Comprehensive structural biology analysis of seven members of the S1 carbohydrate sulfatase family derived from human gut microbiome Bacteroides reveals mechanisms of glycan recognition and sulfate hydrolysis.
Journal Article
RAF inhibitors activate the integrated stress response by direct activation of GCN2
2025
Paradoxical activation of wild type RAF by chemical RAF inhibitors (RAFi) is a well-understood ‘on-target’ biological and clinical response. In this study, we show that a range of RAFi drive ERK1/2-independent activation of the Unfolded Protein Response (UPR), including expression of ATF4 and CHOP, that requires the translation initiation factor eIF2α. RAFi-induced ATF4 and CHOP expression was not reversed by inhibition of PERK, a known upstream activator of the eIF2α-dependent Integrated Stress Response (ISR). Rather, RAFi exposure activated GCN2, an alternate eIF2α kinase, leading to eIF2α-dependent (and ERK1/2-independent) ATF4 and CHOP expression. The GCN2 kinase inhibitor A-92, GCN2 RNAi, GCN2 knock-out or ISRIB (an eIF2α antagonist) all reversed RAFi-induced expression of ATF4 and CHOP indicating that RAFi require GCN2 to activate the ISR. RAFi also activated full-length recombinant GCN2 in vitro and in cells, generating a characteristic ‘bell-shaped’ concentration-response curve, reminiscent of RAFi-driven paradoxical activation of WT RAF dimers. Activation of the ISR by RAFi was abolished by a GCN2 kinase dead mutation. A M802A GCN2 gatekeeper mutant was activated at lower RAFi concentrations, demonstrating that RAFi bind directly to the GCN2 kinase domain; this is supported by mechanistic structural models of RAFi interaction with GCN2. Since the ISR is a critical pathway for determining cell survival or death, our observations may be relevant to the clinical use of RAFi, where paradoxical GCN2 activation is a previously unappreciated off-target effect that may modulate tumour cell responses.
Three BRAF inhibitors are used to treat melanoma and colorectal cancer. Here, the authors demonstrate that these drugs bind and activate the protein kinase GCN2, a previously unappreciated off-target effect that may modulate tumour cell responses.
Journal Article
KinOrtho: a method for mapping human kinase orthologs across the tree of life and illuminating understudied kinases
by
Venkat, Aarya
,
Yeung, Wayland
,
Byrne, Dominic P.
in
Algorithms
,
Analysis
,
Annotation inference
2021
Background
Protein kinases are among the largest druggable family of signaling proteins, involved in various human diseases, including cancers and neurodegenerative disorders. Despite their clinical relevance, nearly 30% of the 545 human protein kinases remain highly understudied. Comparative genomics is a powerful approach for predicting and investigating the functions of understudied kinases. However, an incomplete knowledge of kinase orthologs across fully sequenced kinomes severely limits the application of comparative genomics approaches for illuminating understudied kinases. Here, we introduce KinOrtho, a query- and graph-based orthology inference method that combines full-length and domain-based approaches to map one-to-one kinase orthologs across 17 thousand species.
Results
Using multiple metrics, we show that KinOrtho performed better than existing methods in identifying kinase orthologs across evolutionarily divergent species and eliminated potential false positives by flagging sequences without a proper kinase domain for further evaluation. We demonstrate the advantage of using domain-based approaches for identifying domain fusion events, highlighting a case between an understudied serine/threonine kinase TAOK1 and a metabolic kinase PIK3C2A with high co-expression in human cells. We also identify evolutionary fission events involving the understudied OBSCN kinase domains, further highlighting the value of domain-based orthology inference approaches. Using KinOrtho-defined orthologs, Gene Ontology annotations, and machine learning, we propose putative biological functions of several understudied kinases, including the role of TP53RK in cell cycle checkpoint(s), the involvement of TSSK3 and TSSK6 in acrosomal vesicle localization, and potential functions for the ULK4 pseudokinase in neuronal development.
Conclusions
In sum, KinOrtho presents a novel query-based tool to identify one-to-one orthologous relationships across thousands of proteomes that can be applied to any protein family of interest. We exploit KinOrtho here to identify kinase orthologs and show that its well-curated kinome ortholog set can serve as a valuable resource for illuminating understudied kinases, and the KinOrtho framework can be extended to any protein-family of interest.
Journal Article