Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
212 result(s) for "CORMIER-DAIRE, VALÉRIE"
Sort by:
New perspectives on the treatment of skeletal dysplasia
The last few decades have been marked by the identification of numerous genes implicated in genetic disorders, helping in the elucidation of the underlying pathophysiology of these conditions. This has allowed new therapeutic approaches to emerge such as cellular therapy, gene therapy, or pharmacological therapy for various conditions. Skeletal dysplasias are good models to illustrate these scientific advances. Indeed, several therapeutic strategies are currently being investigated in osteogenesis imperfecta; there are ongoing clinical trials based on pharmacological approaches, targeting signaling pathways in achondroplasia and fibrodysplasia ossificans progressiva or the endoplasmic reticulum stress in metaphyseal dysplasia type Schmid or pseudoachondroplasia. Moreover, the treatment of hypophosphatasia or Morquio A disease illustrates the efficacy of enzyme drug replacement. To provide a highly specialized multidisciplinary approach, these treatments are managed by reference centers. The emergence of treatments in skeletal dysplasia provides new perspectives on the prognosis of these severe conditions and may change prenatal counseling in these diseases over the coming years.
Overgrowth syndromes — clinical and molecular aspects and tumour risk
Overgrowth syndromes are a heterogeneous group of rare disorders characterized by generalized or segmental excessive growth commonly associated with additional features, such as visceromegaly, macrocephaly and a large range of various symptoms. These syndromes are caused by either genetic or epigenetic anomalies affecting factors involved in cell proliferation and/or the regulation of epigenetic markers. Some of these conditions are associated with neurological anomalies, such as cognitive impairment or autism. Overgrowth syndromes are frequently associated with an increased risk of cancer (embryonic tumours during infancy or carcinomas during adulthood), but with a highly variable prevalence. Given this risk, syndrome-specific tumour screening protocols have recently been established for some of these conditions. Certain specific clinical traits make it possible to discriminate between different syndromes and orient molecular explorations to determine which molecular tests to conduct, despite the syndromes having overlapping clinical features. Recent advances in molecular techniques using next-generation sequencing approaches have increased the number of patients with an identified molecular defect (especially patients with segmental overgrowth). This Review discusses the clinical and molecular diagnosis, tumour risk and recommendations for tumour screening for the most prevalent generalized and segmental overgrowth syndromes.Overgrowth syndromes are a heterogeneous group of rare disorders characterized by generalized or segmental excessive growth. This Review discusses the clinical and molecular diagnosis, tumour risk and recommendations for tumour screening for the most prevalent generalized and segmental overgrowth syndromes.
Evidence for therapeutic use of cannabidiol for nail-patella syndrome-induced pain in a real-world pilot study
Nail-patella syndrome (NPS) is a rare genetic disease characterized by dysplastic nails, patella abnormalities, skeletal malformation, and chronic pain. Although chronic pain in NPS is mainly due to bone and musculoskeletal symptoms, it can also result from neurological dysfunction. Conventional analgesics are often insufficient to relieve NPS-associated chronic pain. Cannabinoids, which act on the serotonergic and/or noradrenergic pain systems, may therefore represent valuable non-psychoactive alternatives for managing pain in these patients. The effectiveness and safety of synthetic cannabidiol (CBD) for the management of NPS-associated pain was assessed using real-world data from a pilot cohort of patients with NPS who received a 3-month treatment with oral CBD. The treatment (median dose of 900 mg/day) was associated with a significant reduction in pain intensity (mean score of 7.04 ± 0.24 at initiation versus 4.04 ± 0.38 at 3 months, N  = 28, p  < 0.0001), which correlated with changes in the peripheral concentration of noradrenaline ( r  = 0.705, 95% CI [0.44–0.86], p  < 0.0001). Health-related quality of life and other NPS-associated symptoms also improved in most patients. CBD treatment was well tolerated and no elevations in liver enzyme levels were reported. Synthetic CBD therefore appears to be a safe and effective treatment option for managing NPS-associated chronic pain.
Achondroplasia and hypochondroplasia in France: a nationwide epidemiological analysis
Background Achondroplasia (ACH) and hypochondroplasia (HCH) are among the most common forms of skeletal dysplasia, caused by gain-of-function variants in the FGFR3 gene, leading to disproportionate short stature. The birth prevalence of HCH remains poorly defined. In addition, the reported birth prevalence of ACH in Europe and globally may not be applicable to France, given its relatively high rate of pregnancy terminations for medical reasons. This retrospective study provides the first birth prevalence estimates for ACH and HCH in France, using the French National Registry of Rare Diseases ( Banque Nationale de Données Maladies Rares , BNDMR). Results As of January 2024, 766 patients with ACH (ORPHA:15) and 408 with HCH (ORPHA:429) were identified. Most patients were diagnosed and cared for within the network of constitutional bone diseases centers (ACH: 71.3%; HCH: 63.4%). Overall, 85.5% of ACH cases and 57.2% of HCH cases were related to de novo genetic variants ( p  < 0.0001). ACH was diagnosed prenatally in 40.8% and at birth in 40.6% of patients, whereas HCH was diagnosed postnatally in 65.7% of cases ( p  < 0.0001). To estimate live birth prevalence, we focused on pediatric patients (0–15 years) born between 2008 and 2023. The mean (range) live birth prevalence was 3.27 per 100,000 for ACH (1.90–4.03) and 1.31 per 100,000 for HCH (0.54–2.08). Conclusions This study provides the first nationwide birth prevalence estimates for ACH and HCH in France, leveraging data from BNDMR. ACH is often identified prenatally, whereas HCH is predominantly diagnosed postnatally. The prevalence of HCH may be underestimated due to under-recognition of milder forms. With the emergence of specific therapies for ACH, and for HCH in the near future, strengthening specialized care pathways is critical to ensure equitable access to timely diagnosis and interventions. Clinical trial number Not applicable.
Prevalence of fibrodysplasia ossificans progressiva (FOP) in France: an estimate based on a record linkage of two national databases
Background Fibrodysplasia ossificans progressiva (FOP) is a rare, severely disabling, and life-shortening genetic disorder that causes the formation of heterotopic bone within soft connective tissue. Previous studies found that the FOP prevalence was about one in every two million lives. The aim of this study is to estimate the FOP prevalence in France by probabilistic record-linkage of 2 national databases: 1) the PMSI ( Programme de médicalisation des systèmes d’information ), an administrative database that records all hospitalization activities in France and 2) CEMARA, a registry database developed by the French Centres of Reference for Rare Diseases. Results Using a capture-recapture methodology to adjust the crude number of patients identified in both data sources, 89 FOP patients were identified, which results in a prevalence of 1.36 per million inhabitants (CI95% = [1.10; 1.68]). FOP patients’ mean age was 25 years, only 14.9% were above 40 years, and 53% of them were males. The first symptoms – beside toe malformations- occurred after birth for 97.3% of them. Mean age at identified symptoms was 7 years and above 18 years for only 6.9% of patients. Mean age at diagnosis was 10 years, and above 18 years for 14.9% of the patients. FOP patients were distributed across France. Conclusions Despite the challenge of ascertaining patients with rare diseases, we report a much higher prevalence of FOP in France than in previous studies elsewhere. We suggest that efforts to identify patients and confirm the diagnosis of FOP should be reinforced and extended at both national and European level.
Geleophysic and acromicric dysplasias: natural history, genotype–phenotype correlations, and management guidelines from 38 cases
Purpose Geleophysic dysplasia (GD) and acromicric dysplasia (AD) are characterized by short stature, short extremities, and progressive joint limitation. In GD, cardiorespiratory involvement can result in poor prognosis. Dominant variants in the FBN1 and LTBP3 genes are responsible for AD or GD, whereas recessive variants in the ADAMTSL2 gene are responsible for GD only. The aim of this study was to define the natural history of these disorders and to establish genotype–phenotype correlations. Methods This monocentric retrospective study was conducted between January 2008 and December 2018 in a pediatric tertiary care center and included patients with AD or GD with identified variants ( FBN1 , LTBP3 , or ADAMTSL2) . Results Twenty-two patients with GD (12 ADAMTSL2 , 8 FBN1 , 2 LTBP3 ) and 16 patients with AD (15 FBN1 , 1 LTBP3 ) were included. Early death occurred in eight GD and one AD. Among GD patients, 68% presented with heart valve disease and 25% developed upper airway obstruction. No AD patient developed life-threatening cardiorespiratory issues. A greater proportion of patients with either a FBN1 cysteine variant or ADAMTSL2 variants had a poor outcome. Conclusion GD and AD are progressive multisystemic disorders with life-threatening complications associated with specific genotype. A careful multidisciplinary follow-up is needed.
Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype–phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Next generation phenotyping for diagnosis and phenotype–genotype correlations in Kabuki syndrome
The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, KMT2D -related) from KS2 (KS type 2, KDM6A -related). We included retrospectively and prospectively, from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. After automatic preprocessing, we extracted geometric and textural features. After incorporation of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine learning classifier. The model was tested on an independent validation set. Finally, we compared the performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% (78.9–99.9%, p  < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 0.805 (0.729–0.880, p < 0.001). We report an automatic detection model for KS with high performances (AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC of 0.805. These results outperform the current commercial AI-based solutions and expert clinicians.
Human oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome
Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM. While monoallelic loss-of-function (LoF) mutations in OSMR underlie autosomal dominant familial primary localized cutaneous amyloidosis, the in vivo consequences of human OSM deficiency have never been reported so far. Here, we identified 3 young individuals from a consanguineous family presenting with inherited severe bone marrow failure syndromes (IBMFS) characterized by profound anemia, thrombocytopenia, and neutropenia. Genetic analysis revealed a homozygous 1 base-pair insertion in the sequence of OSM associated with the disease. Structural and functional analyses showed that this variant causes a frameshift that replaces the C-terminal portion of OSM, which contains the FxxK motif that interacts with both OSMR and LIFR, with a neopeptide. The lack of detection and signaling of the mutant OSM suggests a LoF mutation. Analysis of zebrafish models further supported the role of the OSM/OSMR signaling in erythroid progenitor proliferation and neutrophil differentiation. Our study provides the previously uncharacterized and unexpectedly limited in vivo consequence of OSM deficiency in humans.
Craniofacial growth and function in achondroplasia: a multimodal 3D study on 15 patients
Background Achondroplasia is the most frequent FGFR3-related chondrodysplasia, leading to rhizomelic dwarfism, craniofacial anomalies, stenosis of the foramen magnum, and sleep apnea. Craniofacial growth and its correlation with obstructive sleep apnea syndrome has not been assessed in achondroplasia. In this study, we provide a multimodal analysis of craniofacial growth and anatomo-functional correlations between craniofacial features and the severity of obstructive sleep apnea syndrome. Methods A multimodal study was performed based on a paediatric cohort of 15 achondroplasia patients (mean age, 7.8 ± 3.3 years), including clinical and sleep study data, 2D cephalometrics, and 3D geometric morphometry analyses, based on CT-scans (mean age at CT-scan: patients, 4.9 ± 4.9 years; controls, 3.7 ± 4.2 years). Results Craniofacial phenotype was characterized by maxillo-zygomatic retrusion, deep nasal root, and prominent forehead. 2D cephalometric studies showed constant maxillo-mandibular retrusion, with excessive vertical dimensions of the lower third of the face, and modifications of cranial base angles. All patients with available CT-scan had premature fusion of skull base synchondroses. 3D morphometric analyses showed more severe craniofacial phenotypes associated with increasing patient age, predominantly regarding the midface—with increased maxillary retrusion in older patients—and the skull base—with closure of the spheno-occipital angle. At the mandibular level, both the corpus and ramus showed shape modifications with age, with shortened anteroposterior mandibular length, as well as ramus and condylar region lengths. We report a significant correlation between the severity of maxillo-mandibular retrusion and obstructive sleep apnea syndrome (p < 0.01). Conclusions Our study shows more severe craniofacial phenotypes at older ages, with increased maxillomandibular retrusion, and demonstrates a significant anatomo-functional correlation between the severity of midface and mandible craniofacial features and obstructive sleep apnea syndrome.