Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
150 result(s) for "Cable, Michael"
Sort by:
Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site
Various classes of nucleotidyl polymerases with different transcriptional roles contain a conserved core structure. Less is known, however, about the distinguishing features of these enzymes, particularly those of the RNA-dependent RNA polymerase class. The 1.9 Å resolution crystal structure of hepatitis C virus (HCV) nonstructural protein 5B (NS5B) presented here provides the first complete and detailed view of an RNA-dependent RNA polymerase. While canonical polymerase features exist in the structure, NS5B adopts a unique shape due to extensive interactions between the fingers and thumb polymerase subdomains that serve to encircle the enzyme active site. Several insertions in the fingers subdomain account for intersubdomain linkages that include two extended loops and a pair of antiparallel α-helices. The HCV NS5B apoenzyme structure reported here can accommodate a template:primer duplex without global conformational changes, supporting the hypothesis that this structure is essentially preserved during the reaction pathway. This NS5B template:primer model also allows identification of a new structural motif involved in stabilizing the nascent base pair.