Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Cadene, Martine"
Sort by:
Reproductives signature revealed by protein profiling and behavioral bioassays in termite
by
Cadène, Martine
,
Toussaint, Timothée
,
Ruhland, Fanny
in
631/158/856
,
631/1647/296
,
631/92/604
2023
Proteins are known to be social interaction signals in many species in the animal kingdom. Common mediators in mammals and aquatic species, they have seldom been identified as such in insects' behaviors. Yet, they could represent an important component to support social signals in social insects, as the numerous physical contacts between individuals would tend to favor the use of contact compounds in their interactions. However, their role in social interactions is largely unexplored: are they rare or simply underestimated? In this preliminary study, we show that, in the termite
Reticulitermes flavipes,
polar extracts from reproductives trigger body-shaking of workers (a vibratory behavior involved in reproductives recognition) while extracts from workers do not. Molecular profiling of these cuticular extracts using MALDI-TOF mass spectrometry reveals higher protein diversity in reproductives than in workers and a sex-specific composition exclusive to reproductives. While the effects observed with extracts are not as strong as with live termites, these results open up the intriguing possibility that social signaling may not be limited to cuticular hydrocarbons or other non-polar, volatile chemicals as classically accepted. Our results suggest that polar compounds, in particular some of the Cuticular Protein Compounds (CPCs) shown here by MALDI to be specific to reproductives, could play a significant role in insect societies. While this study is preliminary and further comprehensive molecular characterization is needed to correlate the body-shaking triggering effects with a given set of polar compounds, this exploratory study opens new perspectives for understanding the role of polar compounds such as proteins in caste discrimination, fertility signaling, or interspecific insect communication.
Journal Article
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera
by
Nishida, Motohiko
,
Chait, Brian T
,
Cadene, Martine
in
Amino Acid Sequence
,
Bacterial Proteins - genetics
,
Binding Sites
2007
The Kir3.1 K
+
channel participates in heart rate control and neuronal excitability through G‐protein and lipid signaling pathways. Expression in
Escherichia coli
has been achieved by replacing three fourths of the transmembrane pore with the pore of a prokaryotic Kir channel, leaving the cytoplasmic pore and membrane interfacial regions of Kir3.1 origin. Two structures were determined at 2.2 Å. The selectivity filter is identical to the
Streptomyces lividans
K
+
channel within error of measurement (r.m.s.d.<0.2 Å), suggesting that K
+
selectivity requires extreme conservation of three‐dimensional structure. Multiple K
+
ions reside within the pore and help to explain voltage‐dependent Mg
2+
and polyamine blockade and strong rectification. Two constrictions, at the inner helix bundle and at the apex of the cytoplasmic pore, may function as gates: in one structure the apex is open and in the other, it is closed. Gating of the apex is mediated by rigid‐body movements of the cytoplasmic pore subunits. Phosphatidylinositol 4,5‐biphosphate‐interacting residues suggest a possible mechanism by which the signaling lipid regulates the cytoplasmic pore.
Journal Article
Crystal structure and mechanism of a calcium-gated potassium channel
by
Jiang, Youxing
,
Cadene, Martine
,
MacKinnon, Roderick
in
Amino Acid Sequence
,
Bacterial Proteins - chemistry
,
Bacterial Proteins - genetics
2002
Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K
+
channel that opens in response to intracellular Ca
2+
. We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K
+
channel (MthK) from
Methanobacterium thermoautotrophicum
in the Ca
2+
-bound, opened state. Eight RCK domains (regulators of K
+
conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca
2+
binding in a simple manner to perform mechanical work to open the pore.
Journal Article
The open pore conformation of potassium channels
by
Jiang, Youxing
,
Cadene, Martine
,
MacKinnon, Roderick
in
Amino Acid Sequence
,
Amino acids
,
Bacterial Proteins - chemistry
2002
Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channel's membrane-spanning ion pathway. KcsA and MthK, closed and opened K(+) channels, respectively, reveal how such gating transitions occur. Pore-lining 'inner' helices contain a 'gating hinge' that bends by approximately 30 degrees. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12 A) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K(+) channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.
Journal Article
Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses
by
Beaufour, Martine
,
Reymond, Isabelle
,
Cadene, Martine
in
Agriculture
,
biomarkers
,
Biomarkers - analysis
2014
Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.
Journal Article
X-ray structure of a voltage-dependent K+ channel
by
Cadene, Martine
,
Lee, Alice
,
Ruta, Vanessa
in
Aeropyrum pernix
,
Amino Acid Sequence
,
Antibodies, Monoclonal - chemistry
2003
Voltage-dependent K
+
channels are members of the family of voltage-dependent cation (K
+
, Na
+
and Ca
2+
) channels that open and allow ion conduction in response to changes in cell membrane voltage. This form of gating underlies the generation of nerve and muscle action potentials, among other processes. Here we present the structure of KvAP, a voltage-dependent K
+
channel from
Aeropyrum pernix
. We have determined a crystal structure of the full-length channel at a resolution of 3.2 Å, and of the isolated voltage-sensor domain at 1.9 Å, both in complex with monoclonal Fab fragments. The channel contains a central ion-conduction pore surrounded by voltage sensors, which form what we call ‘voltage-sensor paddles’—hydrophobic, cationic, helix–turn–helix structures on the channel's outer perimeter. Flexible hinges suggest that the voltage-sensor paddles move in response to membrane voltage changes, carrying their positive charge across the membrane.
Journal Article
Ligand Binding Study of Human PEBP1/RKIP: Interaction with Nucleotides and Raf-1 Peptides Evidenced by NMR and Mass Spectrometry
by
Karsisiotis, Andreas I.
,
Jouvensal, Laurence
,
Cadene, Martine
in
Affinity
,
Alzheimer's disease
,
Alzheimers disease
2012
Human Phosphatidylethanolamine binding protein 1 (hPEBP1) also known as Raf kinase inhibitory protein (RKIP), affects various cellular processes, and is implicated in metastasis formation and Alzheimer's disease. Human PEBP1 has also been shown to inhibit the Raf/MEK/ERK pathway. Numerous reports concern various mammalian PEBP1 binding ligands. However, since PEBP1 proteins from many different species were investigated, drawing general conclusions regarding human PEBP1 binding properties is rather difficult. Moreover, the binding site of Raf-1 on hPEBP1 is still unknown.
In the present study, we investigated human PEBP1 by NMR to determine the binding site of four different ligands: GTP, FMN, and one Raf-1 peptide in tri-phosphorylated and non-phosphorylated forms. The study was carried out by NMR in near physiological conditions, allowing for the identification of the binding site and the determination of the affinity constants K(D) for different ligands. Native mass spectrometry was used as an alternative method for measuring K(D) values.
Our study demonstrates and/or confirms the binding of hPEBP1 to the four studied ligands. All of them bind to the same region centered on the conserved ligand-binding pocket of hPEBP1. Although the affinities for GTP and FMN decrease as pH, salt concentration and temperature increase from pH 6.5/NaCl 0 mM/20°C to pH 7.5/NaCl 100 mM/30°C, both ligands clearly do bind under conditions similar to what is found in cells regarding pH, salt concentration and temperature. In addition, our work confirms that residues in the vicinity of the pocket rather than those within the pocket seem to be required for interaction with Raf-1.
Journal Article
Tyrosine Sulfation of CCR5 N-Terminal Peptide by Tyrosylprotein Sulfotransferases 1 and 2 Follows a Discrete Pattern and Temporal Sequence
by
Seibert, Christoph
,
Sanfiz, Anthony
,
Cadene, Martine
in
Adducts
,
Amino Acid Sequence
,
Amino acids
2002
The CC-chemokine receptor 5 (CCR5) is the major coreceptor for the entry of macrophage-tropic (R5) HIV-1 strains into target cells. Posttranslational sulfation of tyrosine residues in the N-terminal tail of CCR5 is critical for high affinity interaction of the receptor with the HIV-1 envelope glycoprotein gp120 in complex with CD4. Here, we focused on defining precisely the sulfation pattern of the N terminus of CCR5 by using recombinant human tyrosylprotein sulfotransferases TPST-1 and TPST-2 to modify a synthetic peptide that corresponds to amino acids 2-18 of the receptor (CCR5 2-18). Analysis of the reaction products was made with a combination of reversed-phase HPLC, proteolytic cleavage, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). We found that CCR5 2-18 is sulfated by both TPST isoenzymes leading to a final product with four sulfotyrosine residues. Sulfates were added stepwise to the peptide producing specific intermediates with one, two, or three sulfotyrosines. The pattern of sulfation in these intermediates suggests that Tyr-14 and Tyr-15 are sulfated first, followed by Tyr-10, and finally Tyr-3. These results represent a detailed analysis of the multiple sulfation reaction of a peptide substrate by TPSTs and provide a structural basis for understanding the role of tyrosine sulfation of CCR5 in HIV-1 coreceptor and chemokine receptor function.
Journal Article
The AMINO experiment: exposure of amino acids in the EXPOSE-R experiment on the International Space Station and in laboratory
by
Cottin, Herve
,
Cadène, Martine
,
Colas, Cyril
in
Amino acids
,
Astrobiology
,
Chemical reactions
2015
In order to confirm the results of previous experiments concerning the chemical behaviour of organic molecules in the space environment, organic molecules (amino acids and a dipeptide) in pure form and embedded in meteorite powder were exposed in the AMINO experiment in the EXPOSE-R facility onboard the International Space Station. After exposure to space conditions for 24 months (2843 h of irradiation), the samples were returned to the Earth and analysed in the laboratory for reactions caused by solar ultraviolet (UV) and other electromagnetic radiation. Laboratory UV exposure was carried out in parallel in the Cologne DLR Center (Deutsches Zentrum für Luft und Raumfahrt). The molecules were extracted from the sample holder and then (1) derivatized by silylation and analysed by gas chromatography coupled to a mass spectrometer (GC–MS) in order to quantify the rate of degradation of the compounds and (2) analysed by high-resolution mass spectrometry (HRMS) in order to understand the chemical reactions that occurred. The GC–MS results confirm that resistance to irradiation is a function of the chemical nature of the exposed molecules and of the wavelengths of the UV light. They also confirm the protective effect of a coating of meteorite powder. The most altered compounds were the dipeptides and aspartic acid while the most robust were compounds with a hydrocarbon chain. The MS analyses document the products of reactions, such as decarboxylation and decarbonylation of aspartic acid, taking place after UV exposure. Given the universality of chemistry in space, our results have a broader implication for the fate of organic molecules that seeded the planets as soon as they became habitable as well as for the effects of UV radiation on exposed molecules at the surface of Mars, for example.
Journal Article
Liquid Native MALDI Mass Spectrometry for the Detection of Protein-Protein Complexes
by
Ginguené, David
,
Castaing, Bertrand
,
Beaufour, Martine
in
Agglomeration
,
Analytical Chemistry
,
Bioinformatics
2018
Native mass spectrometry (MS) encompasses methods to keep noncovalent interactions of biomolecular complexes intact in the gas phase throughout the instrument and to measure the mass-to-charge ratios of supramolecular complexes directly in the mass spectrometer. Electrospray ionization (ESI) in nondenaturing conditions is now an established method to characterize noncovalent systems. Matrix-assisted laser desorption/ionization (MALDI), on the other hand, consumes low quantities of samples and largely tolerates contaminants, making it a
priori
attractive for native MS. However, so-called native MALDI approaches have so far been based on solid deposits, where the rapid transition of the sample through a solid state can engender the loss of native conformations. Here we present a new method for native MS based on liquid deposits and MALDI ionization, unambiguously detecting intact noncovalent protein complexes by direct desorption from a liquid spot for the first time. To control for aggregation, we worked with HUαβ, a heterodimer that does not spontaneously rearrange into homodimers in solution. Screening through numerous matrix solutions to observe first the monomeric protein, then the dimer complex, we settled on a nondenaturing binary matrix solution composed of acidic and basic organic matrices in glycerol, which is stable
in vacuo
. The role of temporal and spatial laser irradiation patterns was found to be critical. Both a protein-protein and a protein-ligand complex could be observed free of aggregation. To minimize gas-phase dissociation, source parameters were optimized to achieve a conservation of complexes above 50% for both systems.
Graphical Abstract
ᅟ
Journal Article